NETID: FIRST: LAST: Discussion: Monday 9 10 11 12 1 2 3 4 5 $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 100\}$ $B = \{(p,q) \in \mathbb{R}^2 \mid p \ge 5\}$ $C = \{(a,b) \in \mathbb{R}^2 \mid b \le 20\}$ Prove that $A \cap B \subseteq C$. Hint: notice that $0 \le (x-y)^2$. So $0 \le (x^2+y^2) - 2xy$. **Solution:** Let $(x,y) \in \mathbb{R}^2$. Suppose that $(x,y) \in A \cap B$. Then $(x,y) \in A$ and $(x,y) \in B$. So $x^2 + y^2 \le 100$ and x > 5. Since $0 \le (x^2 + y^2) - 2xy$, we have $2xy \le x^2 + y^2$. So then $x^2 + y^2 \le 100$ implies that $2xy \le 100$. So $xy \le 50$. Since $x \ge 5$, we can divide both sides by x to get $y \le \frac{50}{x} \le 10$. Therefore $y \le 20$. So $(x,y) \in C$, which is what we needed to show. **NETID:** FIRST: LAST: Discussion: Monday 9 10 11 12 1 2 3 4 5 $A = \{\alpha(2, -4) + (1 - \alpha)(-3, 6)) \mid \alpha \in \mathbb{R}\}\$ $B = \{(a, b) \in \mathbb{R}^2 \mid a \ge 1\}$ $C = \{(p,q) \in \mathbb{R}^2 \mid q \le 0\}$ Prove that $A \cap B \subseteq C$. **Solution:** Let (x,y) be a 2D point and suppose that $(x,y) \in A \cap B$. Then $(x,y) \in A$ and $(x,y) \in B$. Since $(x, y) \in A$, $(x, y) = \alpha(2, -4) + (1 - \alpha)(-3, 6)$ where α is a real number. So $x = 2\alpha - 3(1 - \alpha) = 5\alpha - 3$. And $y = -4\alpha + 6(1 - \alpha) = 6 - 10\alpha$. Since $(x,y) \in B$, we know that $x \ge 1$. So $5\alpha - 3 \ge 1$. Therefore $\alpha \ge \frac{4}{5}$. Substituting this into the equation for y, we get $y = 6 - 10\alpha \le 6 - 10\frac{4}{5} = 6 - 8 = -2 \le 0$. Since $y \le 0$, $(x, y) \in C$, which is what we needed to show. CS 173, Spring 2016 Examlet 3, Part A NETID: FIRST: LAST: Discussion: Monday 9 10 11 12 1 2 3 4 5 $A = \{6a + 15b : a, b \in \mathbb{Z}\}$ $B = \{6p + 10q : p, q \in \mathbb{Z}\}$ $C = \{ n \in \mathbb{Z} : 6 \mid n \}$ Prove that $A \cap B \subseteq C$. You may assume that if an integer is divisible by two distinct primes m and n, then it is divisible by mn. **Solution:** Let n be an integer and suppose that $n \in A \cap B$. Then $n \in A$ and $n \in B$. Since $n \in A$, n = 6a + 15b, where a and b are integers. So n = 3(2a + 5b). 2a + 5b is an integer, since a and b are integers. So n is divisible by 3.. Since $n \in B$, n = 6p + 10q where p and q are integers. So n = 2(3p + 5q). 3p + 5q is an integer since p and q are integers. So n is divisible by 2. Since n is divisible by 2 and 3, n is divisible by 6. Therefore, $n \in C$, which is what we needed to prove. **NETID:** FIRST: LAST: Discussion: Monday 9 10 11 12 1 2 3 4 5 $A = \{(x,y) \in \mathbb{R}^2 : y = x^2 - 2x - 1\}$ $B = \{ (p, q) \in \mathbb{R}^2 : |p| \ge 3 \}$ $C = \{(m,n) \in \mathbb{R}^2 : n \ge 0\}$ Prove that $A \cap B \subseteq C$. **Solution:** Let $(x,y) \in \mathbb{R}^2$ and suppose that $(x,y) \in A \cap B$. Then $(x,y) \in A$ and $(x,y) \in B$. Since $(x, y) \in A$, $y = x^2 - 2x - 1$. So y = x(x - 2) - 1. Since $(x, y) \in B$, $|x| \ge 3$. There are two cases: Case 1: $x \ge 3$. Then $x - 2 \ge 1$. So $y \ge 3 \cdot 1 - 1 = 2$. Case 2: $x \le -3$. Then $x - 3 \le -5$. So $x(x - 2) \ge (-3)(-5) = 15$. Therefore $y \ge 14$. In both cases, $y \ge 0$. So $(x, y) \in C$, which is what we needed to prove. NETID: FIRST: LAST: Discussion: Monday 9 10 11 12 1 2 3 4 5 $A = \{(a, b) \in \mathbb{R}^2 : |a + b| \le 2\}$ $B = \{(x, y) \in \mathbb{R}^2 : |x - y + 7| \le 1\}$ $C=\{(p,q)\in\mathbb{R}^2\ :\ p\leq 0\ \mathrm{and}\ q\geq 0\}$ Prove that $A \cap B \subseteq C$. **Solution:** Let $(x,y) \in \mathbb{R}^2$ and suppose that $(x,y) \in A \cap B$. Then $(x,y) \in A$ and $(x,y) \in B$. Since $(x, y) \in A$, $|x + y| \le 2$. Since $(x, y) \in B$, $|x - y + 7| \le 1$. So $x+y \le 2$ and $x-y+7 \le 1$. Adding these equations together, we get $2x+7 \le 3$. So $2x \le -4$. And therefore $x \le -2 \le 0$. Since $|x+y| \le 2$, it's also the case that $-x-y \le 2$. Adding this to $x-y+7 \le 1$, we get $-2y+7 \le 3$. So then $-2y \le -4$. So $y \ge 2 \ge 0$. So $x \leq 0$ and $y \geq 0$, so $(x,y) \in C$, which is what we needed to prove.