NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

 $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 100\}$ 

 $B = \{(p,q) \in \mathbb{R}^2 \mid p \ge 5\}$ 

 $C = \{(a,b) \in \mathbb{R}^2 \mid b \le 20\}$ 

Prove that  $A \cap B \subseteq C$ .

Hint: notice that  $0 \le (x-y)^2$ . So  $0 \le (x^2+y^2) - 2xy$ .

**Solution:** 

Let  $(x,y) \in \mathbb{R}^2$ . Suppose that  $(x,y) \in A \cap B$ . Then  $(x,y) \in A$  and  $(x,y) \in B$ . So  $x^2 + y^2 \le 100$  and x > 5.

Since  $0 \le (x^2 + y^2) - 2xy$ , we have  $2xy \le x^2 + y^2$ . So then  $x^2 + y^2 \le 100$  implies that  $2xy \le 100$ . So  $xy \le 50$ .

Since  $x \ge 5$ , we can divide both sides by x to get  $y \le \frac{50}{x} \le 10$ . Therefore  $y \le 20$ . So  $(x,y) \in C$ , which is what we needed to show.

**NETID:** 

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

 $A = \{\alpha(2, -4) + (1 - \alpha)(-3, 6)) \mid \alpha \in \mathbb{R}\}\$ 

 $B = \{(a, b) \in \mathbb{R}^2 \mid a \ge 1\}$ 

 $C = \{(p,q) \in \mathbb{R}^2 \mid q \le 0\}$ 

Prove that  $A \cap B \subseteq C$ .

**Solution:** Let (x,y) be a 2D point and suppose that  $(x,y) \in A \cap B$ . Then  $(x,y) \in A$  and  $(x,y) \in B$ .

Since  $(x, y) \in A$ ,  $(x, y) = \alpha(2, -4) + (1 - \alpha)(-3, 6)$  where  $\alpha$  is a real number. So  $x = 2\alpha - 3(1 - \alpha) = 5\alpha - 3$ . And  $y = -4\alpha + 6(1 - \alpha) = 6 - 10\alpha$ .

Since  $(x,y) \in B$ , we know that  $x \ge 1$ . So  $5\alpha - 3 \ge 1$ . Therefore  $\alpha \ge \frac{4}{5}$ .

Substituting this into the equation for y, we get  $y = 6 - 10\alpha \le 6 - 10\frac{4}{5} = 6 - 8 = -2 \le 0$ . Since  $y \le 0$ ,  $(x, y) \in C$ , which is what we needed to show.

CS 173, Spring 2016

Examlet 3, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

 $A = \{6a + 15b : a, b \in \mathbb{Z}\}$ 

 $B = \{6p + 10q : p, q \in \mathbb{Z}\}$ 

 $C = \{ n \in \mathbb{Z} : 6 \mid n \}$ 

Prove that  $A \cap B \subseteq C$ . You may assume that if an integer is divisible by two distinct primes m and n, then it is divisible by mn.

**Solution:** Let n be an integer and suppose that  $n \in A \cap B$ . Then  $n \in A$  and  $n \in B$ .

Since  $n \in A$ , n = 6a + 15b, where a and b are integers. So n = 3(2a + 5b). 2a + 5b is an integer, since a and b are integers. So n is divisible by 3..

Since  $n \in B$ , n = 6p + 10q where p and q are integers. So n = 2(3p + 5q). 3p + 5q is an integer since p and q are integers. So n is divisible by 2.

Since n is divisible by 2 and 3, n is divisible by 6. Therefore,  $n \in C$ , which is what we needed to prove.

**NETID:** 

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

 $A = \{(x,y) \in \mathbb{R}^2 : y = x^2 - 2x - 1\}$ 

 $B = \{ (p, q) \in \mathbb{R}^2 : |p| \ge 3 \}$ 

 $C = \{(m,n) \in \mathbb{R}^2 : n \ge 0\}$ 

Prove that  $A \cap B \subseteq C$ .

**Solution:** Let  $(x,y) \in \mathbb{R}^2$  and suppose that  $(x,y) \in A \cap B$ . Then  $(x,y) \in A$  and  $(x,y) \in B$ .

Since  $(x, y) \in A$ ,  $y = x^2 - 2x - 1$ . So y = x(x - 2) - 1.

Since  $(x, y) \in B$ ,  $|x| \ge 3$ . There are two cases:

Case 1:  $x \ge 3$ . Then  $x - 2 \ge 1$ . So  $y \ge 3 \cdot 1 - 1 = 2$ .

Case 2:  $x \le -3$ . Then  $x - 3 \le -5$ . So  $x(x - 2) \ge (-3)(-5) = 15$ . Therefore  $y \ge 14$ .

In both cases,  $y \ge 0$ . So  $(x, y) \in C$ , which is what we needed to prove.

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

 $A = \{(a, b) \in \mathbb{R}^2 : |a + b| \le 2\}$ 

 $B = \{(x, y) \in \mathbb{R}^2 : |x - y + 7| \le 1\}$ 

 $C=\{(p,q)\in\mathbb{R}^2\ :\ p\leq 0\ \mathrm{and}\ q\geq 0\}$ 

Prove that  $A \cap B \subseteq C$ .

**Solution:** Let  $(x,y) \in \mathbb{R}^2$  and suppose that  $(x,y) \in A \cap B$ . Then  $(x,y) \in A$  and  $(x,y) \in B$ .

Since  $(x, y) \in A$ ,  $|x + y| \le 2$ . Since  $(x, y) \in B$ ,  $|x - y + 7| \le 1$ .

So  $x+y \le 2$  and  $x-y+7 \le 1$ . Adding these equations together, we get  $2x+7 \le 3$ . So  $2x \le -4$ . And therefore  $x \le -2 \le 0$ .

Since  $|x+y| \le 2$ , it's also the case that  $-x-y \le 2$ . Adding this to  $x-y+7 \le 1$ , we get  $-2y+7 \le 3$ . So then  $-2y \le -4$ . So  $y \ge 2 \ge 0$ .

So  $x \leq 0$  and  $y \geq 0$ , so  $(x,y) \in C$ , which is what we needed to prove.