CS 173, Spring 2016 Examlet 4, Part B NETID:												
FIRST:				LAS	Γ:							
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

2. (5 points) Suppose that R is a relation on the integers such xRy if and only if x = y. Is R a partial order?

Solution: Yes, R is a partial order. It's reflexive because elements are always related to themselves. It is anti-symmetric and transitive by vacuous truth.

3. (5 points) Let's define the equivalence relation \sim on \mathbb{R} such that $x \sim y$ if and only $|x - y| \in \mathbb{Z}$. List three members of [1.7].

Solution: For example, 1.7, 2.7, and 1009.7.

CS 173, Spring 2016 Examlet 4, Part B												
FIRST:						Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

2. (5 points) Can a relation with at least one related pair (i.e. at least one arrow in a diagram) be irreflexive, symmetric, and also transitive? Either give such a relation or briefly explain why it's not possible to construct one.

Solution: No, this is not possible. Suppose R is our relation and let x and y be two elements such that xRy. Then yRx because it's symmetric. Then xRx because it's transitive. But xRx means that R can't be irreflexive.

3. (5 points) Suppose that R is a relation on the integers such xRy for all integers x and y. Is R a partial order?

Solution: No, R is not a partial order, because it's not anti-symmetric. For example, we have 2R3 and 3R2 but 2 and 3 aren't equal.

CS 173, Spring 2016 Examlet 4, Part B NETID:												
FIRST:				LAS	Γ:							
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be antisymmetric.

Solution: For any $x, y \in A$, if xRy and yRx, then x = y. Or for any $x, y \in A$, if xRy and $x \neq y$, then $y \not Rx$.

3. (5 points) Let R be the relation on \mathbb{Z} such that xRy if and only if |x| + |y| = 2Is R transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: No, R is not transitive. We have 0R2 and 2R0, but not 0R0.

CS 173, Sp Examlet 4,															
FIRST:						LAST:									
Discussion:	Monday	9	10	11	12	1	2	3	4	5					
1. (5 points) Che	eck all boxes th	at co	orrectly	char	acterize	this	relati	ion or	n the	set $\{A$,B,C,I	[0, E, F]			
A ->>	• C F	E		R	eflexive	: [Irref	lexive	e:	$\sqrt{}$				
				S	ymmetr	ic:		Anti	symn	netric:					
$B \longrightarrow$	▶ D ← F	ה		Т	ransitive	e:									

2. (5 points) A relation is a strict partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

Solution: irreflexive, antisymmetric, transitive

3. (5 points) Let R be the relation on \mathbb{Z} such that xRy if and only if |x| + |y| = 2Is R reflexive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: No, R is not reflexive. 2 (for example) is not related to itself.

CS 173, Spring 2016 Examlet 4, Part B NETID:												
FIRST:				LAS	Γ:							
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be transitive.

Solution: For any $x, y, z \in A$, if xRy and yRz, then xRz.

3. (5 points) Let's define the equivalence relation \sim on \mathbb{N}^3 such that $(x,y,z) \sim (p,q,r)$ if and only x+y+z=p+q+r. List three members of [(0,0,1)].

Solution: The three coordinates need to be non-negative integers that sum to 1. So the only members of this equivalence class are (0,0,1), (0,1,0), and (1,0,0).