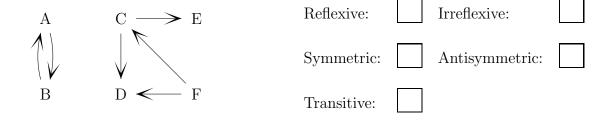

CS 173, Spring 2016 NETID: Examlet 4, Part B FIRST: LAST: Discussion: Monday 9 10 11 12 1 2 3 4 **5**

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.



2. (5 points) Suppose that R is a relation on the integers such xRy if and only if x = y. Is R a partial order?

3. (5 points) Let's define the equivalence relation \sim on $\mathbb R$ such that $x \sim y$ if and only $|x-y| \in \mathbb Z$. List three members of [1.7].

CS 173, Spring 2016 NETID: Examlet 4, Part B FIRST: LAST: Discussion: Monday 9 10 11 **12** 1 2 3 4 5

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Can a relation with at least one related pair (i.e. at least one arrow in a diagram) be irreflexive, symmetric, and also transitive? Either give such a relation or briefly explain why it's not possible to construct one.

3. (5 points) Suppose that R is a relation on the integers such xRy for all integers x and y. Is R a partial order?

CS 173, Spring 2016 Examlet 4, Part B NETID:											
FIRST:					LAS	Γ:					
Discussion:	Monday	9	10	11	12	1	2	3	4	5	
1. (5 points) Ch	eck all boxes	that co	orrectly	chara	cterize	this	relati	ion or	n the	set {2	$\{A,B,C,D,E,F\}$.
A	C	E		Re	flexive	: [Irrefl	exive	:	
				Sy	mmetr	ic:		Antis	symm	etric:	
В	D 1	F		Tr	ansitiv	e: [

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be antisymmetric.

3. (5 points) Let R be the relation on \mathbb{Z} such that xRy if and only if |x| + |y| = 2Is R transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

CS 173, Spr Examlet 4,		6 N	ETII);								
FIRST:					LAST:							
Discussion:	Monday	9	10	11	12	1	2	3	4	5		
1. (5 points) Chec	k all boxes th	at co	orrectly	char	acterize	this	relati	ion or	n the	set {2	A, B, C, I	D, E, F.
A>	C ← E	2		R	eflexive:	: [Irrefl	lexive	:		
				S	ymmetri	ic:		Antis	symm	netric:		
$B \longrightarrow$	D ← F	٦		Т	ransitive	e: [

2. (5 points) A relation is a strict partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

3. (5 points) Let R be the relation on \mathbb{Z} such that xRy if and only if |x| + |y| = 2Is R reflexive? Informally explain why it is, or give a concrete counter-example showing that it is not.

CS 173, Spring 2016

Examlet 4, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

10

9

11 12

1

2 3 4

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

Reflexive:

Irreflexive:

5

Antisymmetric: Symmetric:

Transitive:

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be transitive.

3. (5 points) Let's define the equivalence relation \sim on \mathbb{N}^3 such that $(x,y,z)\sim(p,q,r)$ if and only x + y + z = p + q + r. List three members of [(0, 0, 1)].