CS 173, Spring 2016 Examlet 5, Part A NETID:	
FIRST:	LAST:

Discussion:

Monday

1. (10 points) Suppose that A and B are sets. Suppose that $f: B \to A$ and $g: A \to B$ are functions such that f(g(x)) = x for every $x \in A$. Prove that g is one-to-one.

 $\mathbf{2}$

2. (5 points) $A = \{0, 1, 4, 9, 16, 25, 36, \ldots\}$, i.e. perfect squares starting with 0. $B = \{2, 4, 6, 8, 10, 12, 14, \ldots\}$, i.e. the even numbers starting with 2. Give a specific formula for a bijection $f: A \to B$. (You do not need to prove that it is a bijection.)

CS 173, Spring 2016	NETID.
Examlet 5, Part A	NETID:

FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (10 points) Suppose that $f:A\to B$ and $g:B\to C$ are one-to-one. Prove that $g\circ f$ is one-to-one.

2. (5 points) What's wrong with this attempt to define $f \circ g$?

If $f:A\to B$ and $g:B\to C$ are functions, then $f\circ g$ is the function from A to C defined by $(f\circ g)(x)=f(g(x)).$

CS 173, Spring 2016	METID.
Examlet 5, Part A	NETID.

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (10 points) Suppose that $f: \mathbb{Z} \to \mathbb{Z}$ is onto. Let's define $g: \mathbb{Z}^2 \to \mathbb{Z}^2$ by g(x,y) = (f(x) + y, y + 3). Prove that g is onto.

2. (5 points) Suppose that $f: \mathbb{Z} \to \mathbb{Z}$ is increasing (but perhaps not strictly increasing). Dumbledore claims that f must be one-to-one. Is he correct? Briefly explain why he is or give a concrete counter-example.

CS 173, Sp Examlet 5,	oring 2010 , Part A	3 N	ETII):								
FIRST:					LAS	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

1. (10 points) Let P be the set of pairs of positive integers. Suppose that $f: P \to \mathbb{R}^2$ is defined by $f(x,y)=(\frac{x}{y},x+y)$. Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

2. (5 points) Give an example of a function $f: \mathbb{N} \to \mathbb{N}$ which is one-to-one but not onto. Be specific.

CS 173, Spring 2016	METID.
Examlet 5, Part A	NETID.

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (10 points) If a is any real number, (a, ∞) is the set of all real numbers greater than a. Let's define the function $f:(0,\infty)\to\left(\frac{1}{3},\infty\right)$ by $f(x)=\frac{x^2+2}{3x^2}$. Prove that f is onto.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: M \to C$ to be "one-to-one." You must use explicit quantifiers; do not use words like "unique".

CS 173, Sp Examlet 5	oring 2010 , Part A	6 N	ETII	D:								
FIRST:					LAS	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

1. (10 points) Suppose that A and B are sets. Suppose that $f: B \to A$ and $g: A \to B$ are functions such that f(g(x)) = x for every $x \in A$. Prove that f is onto.

2. (5 points) Suppose that $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ are functions. Let's define the function f+g by (f+g)(x)=f(x)+g(x). Adele claims that if f and g are one-to-one, then f+g is one-to-one. Is this correct? Briefly explain why it is or give a counter-example.