CS 173, Spring 2016

Examlet 7, Part A

NETID:

FIRST:

LAST:

Discussion:

Monday

10

9

11

12

1

 $\mathbf{2}$

3

4 5

Use (strong) induction to prove the following claim:

For all positive integers n, $\sum_{p=1}^{n} p2^p = (n-1)2^{n+1} + 2$.

Solution: Proof by induction on n.

Base case(s): n = 1. Then $\sum_{p=1}^{n} p2^p = 1 \cdot 2^1 = 2$ and $(n-1)2^{n+1} + 2 = 0 \cdot 2^2 + 2 = 2$. So the equation holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that
$$\sum_{p=1}^{n} p2^p = (n-1)2^{n+1} + 2$$
 for $n = 1, \dots, k$.

Rest of the inductive step:

From the inductive hypothesis $\sum_{p=1}^{k} p2^{p} = (k-1)2^{k+1} + 2.$

Then

$$\sum_{p=1}^{k+1} p 2^p = \left(\sum_{p=1}^k p 2^p\right) + (k+1)2^{k+1}$$

$$= ((k-1)2^{k+1} + 2) + (k+1)2^{k+1}$$

$$= ((k-1) + (k+1))2^{k+1} + 2 = 2k2^{k+1} + 2 = k2^{k+2} + 2$$

So $\sum_{p=1}^{k+1} p2^p = k2^{k+2} + 2$, which is what we needed to show.

CS 173, Spring 2016

Examlet 7, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11

 $12\quad 1\quad 2\quad 3\quad 4\quad 5$

If f is a function, recall that f' is its derivative. Recall the product rule: if f(x) = g(x)h(x), then f'(x) = g'(x)h(x) + g(x)h'(x). Assume we know that the derivative of f(x) = x is f'(x) = 1.

Use (strong) induction to prove the following claim:

For any positive integer n, if $f(x) = x^n$ then $f'(x) = nx^{n-1}$.

Solution: Proof by induction on n.

Base case(s): n = 1. Then f(x) = x. So f'(x) = 1. But also $nx^{n-1} = 1 \cdot n^0 = 1$. So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that if $f(x) = x^n$ then $f'(x) = nx^{n-1}$, for n = 1, ..., k.

Rest of the inductive step: Suppose that $f(x) = x^{k+1}$. Let g(x) = x and $h(x) = x^k$. By the product rule f'(x) = g'(x)h(x) + g(x)h'(x).

Since g(x) = x, we know that g'(x) = 1. By the inductive hypothesis we know that $h'(x) = kx^{k-1}$.

So $f'(x) = g'(x)h(x) + g(x)h'(x) = 1 \cdot x^k + x \cdot kx^{k-1}$. Simplifying, we get $f'(x) = x^k + kx^k = (1+k)x^k$. So $f'(x) = (1+k)x^k$, which is what we needed to show.

CS 173, Spring 2016

Examlet 7, Part A

NETID:

FIRST:

LAST:

Discussion:

Monday

10

9

11

12

1

 $\mathbf{2}$

3

4 5

Use (strong) induction to prove the following claim:

For any natural number n, $\sum_{p=0}^{n} 3(-1/2)^p = 2 + (-1/2)^n$

Solution: Proof by induction on n.

Base case(s): At n = 0, $\sum_{p=0}^{n} 3(-1/2)^p = 3 \cdot (-1/2)^0 = 3$ and $2 + (-1/2)^n = 2 + (-1/2)^0 = 2 + 1 = 3$. So the equation holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that
$$\sum_{n=0}^{n} 3(-1/2)^p = 2 + (-1/2)^n$$
 for $n = 0, \dots, k$.

Rest of the inductive step: From the inductive hypothesis, $\sum_{p=0}^{k} 3(-1/2)^p = 2 + (-1/2)^k$.

Then

$$\sum_{p=0}^{k+1} 3(-1/2)^p = (\sum_{p=0}^{k} 3(-1/2)^p) + 3(-1/2)^{k+1}$$

$$= (2 + (-1/2)^k) + 3(-1/2)^{k+1} = 2 - 2(-1/2)^{k+1} + 3(-1/2)^{k+1}$$

$$= 2(-1/2)^{k+1}$$

So $\sum_{p=0}^{k+1} 3(-1/2)^p = 2 + (-1/2)^{k+1}$, which is what we needed to show.

CS 173, Spring 2016 Examlet 7, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Use (strong) induction to prove the following claim:

For all natural numbers
$$n$$
, $\sum_{p=0}^{n} (2p+1)^2 = \frac{(n+1)(2n+1)(2n+3)}{3}$

Solution: Proof by induction on n.

Base case(s): At
$$n = 0$$
, $\sum_{p=1}^{n} (2p+1)^2 = 1^2 = 1$ and $\frac{(n+1)(2n+1)(2n+3)}{3} = \frac{1 \cdot 1 \cdot 3}{3} = 1$. So the equation holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

$$\sum_{n=0}^{n} (2p+1)^2 = \frac{(n+1)(2n+1)(2n+3)}{3} \text{ for } n=0,\dots,k.$$

Rest of the inductive step: From the inductive hypothesis, we know that

$$\sum_{k=0}^{k} (2p+1)^2 = \frac{(k+1)(2k+1)(2k+3)}{3}.$$

Then

$$\sum_{p=0}^{k+1} (2p+1)^2 = \left(\sum_{p=0}^k (2p+1)^2\right) + \left(2(k+1)+1\right)^2 = \frac{(k+1)(2k+1)(2k+3)}{3} + \left(2(k+1)+1\right)^2$$

$$= \frac{(k+1)(2k+1)(2k+3)}{3} + \left(2k+3\right)^2 = (2k+3)\frac{(k+1)(2k+1) + 3(2k+3)}{3}$$

$$= (2k+3)\frac{(2k^2+3k+1) + (6k+9)}{3} = (2k+3)\frac{2k^2+9k+10}{3} = \frac{(k+2)(2k+3)(2k+5)}{3}$$

So
$$\sum_{p=0}^{k+1} (2p+1)^2 = \frac{(k+2)(2k+3)(2k+5)}{3}$$
, which is what we needed to show

CS 173, Spring 2016 Examlet 7, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Use (strong) induction to prove the following claim:

Claim: $2^{n+2} + 3^{2n+1}$ is divisible by 7, for all natural numbers n.

Solution:

Proof by induction on n.

Base case(s): At n=0, $2^{n+2}+3^{2n+1}=2^2+3=7$ which is clearly divisible by 7.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $2^{n+2} + 3^{2n+1}$ is divisible by 7, for n = 0, 1, ..., k.

Rest of the inductive step:

At
$$n = k + 1$$
, $2^{n+2} + 3^{2n+1}$ is equal to $2^{k+3} + 3^{2k+3}$.

$$2^{k+3} + 3^{2k+3} = 2 \cdot 2^{k+2} + 9 \cdot 3^{2k+1} = 2(2^{k+2} + 3^{2k+1}) + 7(3^{3k+1})$$

By the inductive hypothesis, $2^{k+2} + 3^{2k+1}$ is divisible by 7. So $2(2^{k+2} + 3^{2k+1})$ is divisible by 7. $7(3^{3k+1})$ is divisible by 7 because 3^{3k+1} is an integer. So the sum of these two terms must be divisible by 7.

Thus, $2^{k+3} + 3^{2k+3}$ is divisible by 7, which is what we needed to show.

CS 173, Spring 2016 Examlet 7, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Use (strong) induction to prove the following claim:

Claim: For all integers $a, b, n, n \ge 1$, if $a \equiv b \pmod{7}$ then $a^n \equiv b^n \pmod{7}$.

Use this definition in your proof: $x \equiv y \pmod{p}$ if and only if x = y + kp for some integer k.

Solution:

Proof by induction on n.

Base case(s): At n = 1, our claim becomes "if $a \equiv b \pmod{7}$ then $a \equiv b \pmod{7}$ " which is clearly true.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that if $a \equiv b \pmod{7}$ then $a^n \equiv b^n \pmod{7}$, for all integers a, b, n, where $n = 1, \ldots, k$,

a and b need to be introduced at some point in this proof, but there's several places you might do this. For example, you could say "let a and b be integers" right at the start. Then your inductive hypothesis would just be "if $a \equiv b \pmod{7}$ then $a^n \equiv b^n \pmod{7}$, for $n = 1, \ldots, k$." We won't get picky about this when grading.

Rest of the inductive step:

Let a and b be integers.

Suppose that $a \equiv b \pmod{7}$, then a = b + 7p for some integer p.

From the inductive hypothesis, we know that $a^k \equiv b^k \pmod{7}$, So $a^k = b^k + 7q$ for some integer q.

Combining these two equations, we get that

$$a^{k+1} = (b+7p)(b^k+7q) = b^{k+1} + 7(pb^k+bq+7pq)$$

 $pb^k + bq + 7pq$ is an integer since p, q, and b are integers. So we know that $a^{k+1} \equiv b^{k+1} \pmod{7}$, which is what we needed to prove.