NETID:

FIRST:

LAST:

Discussion:

Monday

9 10

11

12

 $\mathbf{2}$

1

4

5

3

Use (strong) induction to prove the following claim:

For all positive integers
$$n$$
, $\sum_{p=1}^{n} p2^p = (n-1)2^{n+1} + 2$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Spring 2016 Examlet 7, Part A NETID:	
FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

If f is a function, recall that f' is its derivative. Recall the product rule: if f(x) = g(x)h(x), then f'(x) = g'(x)h(x) + g(x)h'(x). Assume we know that the derivative of f(x) = x is f'(x) = 1.

Use (strong) induction to prove the following claim:

For any positive integer n, if $f(x) = x^n$ then $f'(x) = nx^{n-1}$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST:

LAST:

Discussion:

Monday

10

9

11

12

 $\mathbf{2}$

1

 $oldsymbol{4}$

5

3

Use (strong) induction to prove the following claim:

For any natural number
$$n$$
, $\sum_{p=0}^{n} 3(-1/2)^p = 2 + (-1/2)^n$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST:

LAST:

Discussion:

Monday

9 10

11

12

1

 $\mathbf{2}$

3

4 5

Use (strong) induction to prove the following claim:

For all natural numbers
$$n$$
, $\sum_{p=0}^{n} (2p+1)^2 = \frac{(n+1)(2n+1)(2n+3)}{3}$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Spring 2016	NETID:
Examlet 7, Part A	NETID.

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

Use (strong) induction to prove the following claim:

Claim: $2^{n+2} + 3^{2n+1}$ is divisible by 7, for all natural numbers n.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST:

LAST:

Discussion:

Monday

9 10

11 12

1

2 3

4 5

Use (strong) induction to prove the following claim:

Claim: For all integers $a, b, n, n \ge 1$, if $a \equiv b \pmod{7}$ then $a^n \equiv b^n \pmod{7}$.

Use this definition in your proof: $x \equiv y \pmod{p}$ if and only if x = y + kp for some integer k.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: