Examlet 7, Part B

NETID:

FIRST: LAST:

Discussion: Monday 9 **10** 11 12 1 2 3 4 **5**

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

$$\sum_{k=3}^{n} k^7$$

$$\sum_{n=1}^{n-2} p^9$$

$$\sum_{p=1}^{n-2} p^9 \qquad \sum_{p=1}^{n-2} (p+2)^7 \qquad \sum_{p=1}^{n-2} k^9 \qquad \sum_{p=1}^{n-2} k^7$$

$$\sum_{p=1}^{n-2} k^9$$

$$\sum_{n=1}^{n-2} k^7$$

Suppose I want to estimate $\frac{103}{20}$. 10 is _____

an upper bound a lower bound

an exac
not a b

 ≤ 3

ct answer oound on

The chromatic number of W_n .

$$\leq 4$$

Examlet 7, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

10

9

11

12

1

2 3 4 5

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

$$\sum_{k=0}^{n} \frac{1}{2^k}$$

$$1 - (\frac{1}{2})^{n-1} \quad \boxed{}$$

$$2 - \left(\frac{1}{2}\right)^n \qquad \qquad 1 - \left(\frac{1}{2}\right)^n$$

$$1 - (\frac{1}{2})^n$$

$$2 - (\frac{1}{2})^{n-1}$$

All elements of M are also elements of X.

$$M = X$$

$$M \subseteq X$$

$$X \subseteq M$$

Chromatic number of a bipartite graph with at least two vertices.

can't tell

Examlet 7, Part B

NETID:

FIRST:	
--------	--

LAST:

Discussion:

Monday

9 10 11

12

1

2 3 4 5

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

Chromatic number of G

 $\mathcal{C}(G)$

 $\phi(G)$

 $\chi(G)$ $\parallel G \parallel$

All elements of X are also elements of M.

M = X $M \subseteq X$ $X \subseteq M$

Examlet 7, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

9 10

11

12

1

3

 $\mathbf{2}$

4 5

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

10 people rowed across Lake Tahoe in my canoe. 10 is _____ how many people the canoe can carry.

an upper bound on a lower bound on

exactly not a bound on

 $\sum_{i=1}^{p-1} i$

 $\frac{p(p-1)}{2}$

 $\frac{(p-1)^2}{2}$

<u>p(p+1)</u>

 $\frac{(p-1)(p+1)}{2}$

The chromatic number of a graph with maximum vertex degree D

= D $\leq D + 1$

= D + 1 $\geq D + 1$

Examlet 7, Part B

NETID:

FIRST:

Discussion: N

Monday

9 10

11

12

LAST:

1

2 3

4

5

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

Leal team's bridge held 100 pounds without collapsing. 100 pounds is _____ on how much the bridge can hold.

an upper bound on a lower bound on

exactly not a bound on

on _

 $\sum_{k=3}^{n} k^7$

 $\sum_{n=1}^{n-2} p^9$

 $\sum_{n=1}^{n-2} k^7$

 $\sum_{n=1}^{n-2} k^9$

 $\sum_{p=1}^{n-2} (p+2)^7$

Graph H is a subgraph of W_7 . 4 is a ____ the chromatic number of H.

an upper bound on a lower bound on

exactly not a b

exactly not a bound on

CS 173, Spring 2016 Examlet 7, Part B			NETID:									
FIRST:					LAS	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

1. (11 points) If G is a graph, recall that $\chi(G)$ is its chromatic number. Suppose that G is a graph with at least one edge and H is another graph with at least one edge, not connected to G. Now, pick a specific edge e from G and an edge f from H and merge the two edges, creating a combined graph T. For example, suppose that G is C_5 and H is K_4 . Then T might look as follows, where g marks nodes of G and g marks nodes of H.

Describe how $\chi(T)$ is related to $\chi(G)$ and $\chi(H)$, justifying your answer.

2. (4 points) Check the (single) box that best characterizes each item.

$$\sum_{k=0}^{n-1} \frac{1}{2^k} \qquad 1 - (\frac{1}{2})^{n-1} \qquad 2 - (\frac{1}{2})^n \qquad 1 - (\frac{1}{2})^n \qquad 2 - (\frac{1}{2})^{n-1} \qquad$$
an upper bound on $\tau \qquad \qquad$ exactly $\tau \qquad \qquad$
a lower bound on $\tau \qquad \qquad$ not a bound on $\tau \qquad \qquad$