CS 173, Spring 2016 Examlet 8, Part B NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(10 points) Suppose we have a function F defined (for n a power of 2) by

F(2) = 17 $F(n) = 3F(n/2), \text{ for } n \ge 4$

Use unrolling to find the closed form for F. Show your work and simplify your answer.

CS 173, Sp Examlet 8,	oring 2010 , Part B	6 N	ETII	D:								
FIRST:					LAS	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

1. (8 points) Suppose we have a function g defined by

$$g(0) = g(1) = c$$

 $g(n) = kg(n-2) + n^2$, for $n \ge 2$

where k and c are constants. Express g(n) in terms of g(n-6) (where $n \ge 6$). Show your work and simplify your answer.

2. (2 points) Check the (single) box that best characterizes each item.

Shorthand for the n-dimensional hypercube.

 C_n H_n Z_n

CS 173, Spring 2016

Examlet 8, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

10

9

12

1 $\mathbf{2}$ 4 $\mathbf{5}$

3

1. (8 points) Suppose we have a function f defined by

$$f(1) = 5$$

$$f(1) = 5$$

 $f(n) = 3f(n-1) + n^2 \text{ for } n \ge 2$

Express f(n) in terms of f(n-3) (where $n \ge 4$). Show your work and simplify your answer.

11

2. (2 points) Suppose that $f: \mathbb{N} \to \mathbb{N}$ is such that $f(n) = n^2$. Give a recursive definition of f

CS 173, Spring 2016 Examlet 8, Part B

NETID:

FIRST:

LAST:

12

Discussion: Monday

nday 9 10 11

 $1 \quad 2 \quad 3 \quad 4 \quad 5$

(10 points) Suppose we have a function f defined by

$$f(0) = f(1) = 3$$

 $f(n) = 5f(n-2) + d$, for $n \ge 2$

where d is a constant.

Your partner has already figured out that

$$f(n) = 5^{k} f(n - 2k) + \sum_{p=0}^{k-1} d5^{p}$$

Finish finding the closed form for f(n) assuming that n is even. Show your work and simplify your answer. Recall the following useful closed form (for $r \neq 1$): $\sum_{k=0}^{n} r^k = \frac{r^{n+1}-1}{r-1}$

\mathbf{CS}	173,	\mathbf{Sp}	ring	2016
Eve	mlot	Q	Dari	B

NETID:

FIRST:	LAST:

Discussion: Monday 3 9 **10** 11 **12** 1 2 4 **5**

1. (8 points) Suppose we have a function f defined by

$$f(0) = f(1) = 3$$

 $f(n) = 5f(n-2) + d$, for $n \ge 2$

where d is a constant. Express f(n) in terms of f(n-6) (where $n \geq 6$). Show your work and simplify your answer.

2. (2 points) Check the (single) box that best characterizes each item.

f(n) = n! can be defined recursively by f(0) = 1, and f(n) = nf(n-1)for all integers ...

 $n \ge 0$ $n \ge 1$ $n \ge 2$

CS 173, Spring 2016 Examlet 8, Part B

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(10 points) Suppose we have a function g defined (for n a power of 4) by

$$g(1) = c$$

$$g(n) = 4g(n/2) + n \text{ for } n \ge 4$$

Your partner has already figured out that

$$g(n) = 4^k g(n/2^k) + n \sum_{p=0}^{k-1} 2^p$$

Finish finding the closed form for g(n) assuming that n is a power of 2. Show your work and simplify your answer. Recall that $\log_b n = (\log_a n)(\log_b a)$.