CS 173,	Spring	2016
---------	--------	------

Examlet 9, Part B

NETID:

FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, c, and d. Circle the trees that match the grammar.

2. (4 points) Check the (single) box that best characterizes each item.

The diameter of a full, complete tree of	$\leq h$	h	h+1
height h .			
	2h	$\leq 2h$	

\mathbf{CS}	173,	Spring	2016
---------------	------	--------	------

Examlet 9, Part B

NETID:

FIRST:	LAST:

Discussion: Monday **12** $\mathbf{2}$ 3 4 **5** 11 1 9 **10**

1. (8 points) Here is a grammar, with start variable S and terminals a and c. Circle the trees that match the grammar.

$$S \ \rightarrow \ S \ S \ a \ | \ c \ S \ | \ c \ c$$

2. (4 points) Check the (single) box that best characterizes each item.

The level of a leaf node in a tree of height h.

$$h-1$$

$$\leq h$$

$$\sum_{k=0}^{n-1} 2^k$$

$$2^n-2$$

$$2^n-1$$

$$2^{n}-2$$
 $2^{n}-1$ $2^{n-1}-1$ $2^{n+1}-1$

$$2^{n+1}-1$$

\mathbf{CS}	173 ,	Spring	2016
---------------	--------------	--------	------

Examlet 9, Part B

NETID:

LAST:

Discussion:

Monday

10

9

11

12

 $\mathbf{2}$

1

3 4

5

1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, c, and d. Circle the trees that match the grammar.

2. (4 points) Check the (single) box that best characterizes each item.

Total number of leaves in a 3-ary tree of height h

$$3^h$$

$$\leq 3^h$$

$$\frac{1}{2}(3^{h+1}-1)$$
 $3^{h+1}-1$

$$3^{h+1}-1$$

The number of nodes in a binary tree of height h

$$\geq 2^h$$

$$2^{h+1} - 1$$

$$\leq 2^{h+1} - 1$$
 $\geq 2^{h+1} - 1$

FIRST:		LAST:									
Discussion:	Monday	9 1	10 11	. 12	1	2	3	4	5		
1. (8 points) Co $S \rightarrow b$ S is the only st Here are two se leaves have this leaf labels.	$S \ a \ \ a \ S \ b \ $ tart symbol. The equences of leaf	c ne termi labels.	nal symb For each		e, eith	ner dr	aw a		_		
$b\ b\ a\ c\ b\ a\ b$				$b \ a \ b$	$c \ a \ b$	a					
2. (4 points) Chec	ck the (single) l	oox that	best cha	aracteriz	es eac	ch ite	m.				
The chromatic		1		2			≤ 2				
a full 3-ary tree	е	3		≤ 3			can	't tel	l		
		$n \operatorname{edg}$	es		- 1 e	edges]	$\leq n$ ee	dges	
A tree with n i	nodes has	n/2 e	dges	lo	$\log n$ e	dges					

CS 173, Spring 2016

Examlet 9, Part B

NETID:

LAST: FIRST:

Discussion: Monday $\mathbf{2}$ 3 1 9 **10** 11 **12** 4 **5**

1. (8 points) Here is a grammar with start symbol S and terminals symbols a,b, and c. Circle the trees that match the grammar.

$$S \rightarrow SS \mid abc \mid a$$

2. (4 points) Check the (single) box that best characterizes each item.

The diameter of a tree of height h.

$$\leq h$$

$$h+1$$

neter of a tree of height
$$h$$
.

$$\leq 2h$$

Total number of leaves in a full and complete 5-ary tree of height h

$$5^h$$

$$\leq 5^h$$

$$\geq 5^h$$

$$5^{h+1} - 1$$

CS 173, Sp Examlet 9	O	$\frac{6}{N}$	ETII):								
FIRST:					LAST:							
Discussion:	Monday	9	10	11	12	1	2	3	4	5		
S is the only st Here are two se	nsider the follows $S \ b \ \ b \ S \ b \ $ cart symbol. The equences of leaf is sequence of la	c ne ter labels	minal s	symbo	equence	e, eith	ner dr			_		
$b\ a\ b\ c\ b\ b$					a b	$c\ b\ a$						
2. (4 points) Checonomic New question with n noon tree with n n n n n n n n n n n n n n n n n n n	which proved a	bit to		d. So	we acce			ıple (other $\frac{(n-1)}{2}$	answe	ers for :	full credit
A binary tree least $2^h - 1$ ver	of height h havinges (nodes).	as at		ue [fal	se [