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CS 173, Spring 2016

Examlet 10, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Use (strong) induction to prove the following claim:

Claim: For any positive integer n,
n∑

p=1

1
√
p
≤ 2

√
n

Solution:

Proof by induction on n.

Base Case(s): At n = 1,
n∑

p=1

1
√
p
= 1 ≤ 2 = 2 · n. So the claim holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that
n∑

p=1

1
√
p
≤ 2

√
n for n = 1, 2, . . . , k.

Inductive Step:

First, notice that (
√
k −

√
k + 1 )2 ≥ 0. Multiplying this out gives us k − 2

√
k
√
k + 1 + (k + 1) ≥ 0.

So 2k + 1 ≥ 2
√
k
√
k + 1. ¿ Using this inequality plus the inductive hypothesis, we can compute

k+1∑

p=1

1
√
p

= (

k∑

p=1

1
√
p
) +

1
√
k + 1

≤ 2
√
k +

1
√
k + 1

=
2
√
k
√
k + 1 + 1

√
k + 1

≤
(2k + 1) + 1

√
k + 1

=
2k + 2
√
k + 1

=
2(k + 1)
√
k + 1

= 2
√
k + 1
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CS 173, Spring 2016

Examlet 10, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Let function f : Z+ → R be defined by

f(1) = f(2) = 1

f(n) = 1
2
f(n− 1) + 1

f(n−2)

Use (strong) induction to prove that 1 ≤ f(n) ≤ 2 for all positive integers n.

Hint: prove both inequalities together using one induction.

Solution:

Proof by induction on n.

Base Case(s): At n = 1 and n = 2, f(n) = 1. So 1 ≤ f(n) ≤ 2.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that 1 ≤ f(n) ≤ 2 for
n = 1, 2, . . . k − 1.

Inductive Step: From the inductive hypothesis, we know that 1 ≤ f(k−1) ≤ 2 and 1 ≤ f(k−2) ≤ 2.

So 1
2
≤ 1

2
f(k − 1) ≤ 1

2
· 2 = 1 and 1

2
≤ 1

f(k−2)
≤ 1

1
= 1.

Using the upper bounds from these equations: f(k) = 1
2
f(k − 1) + 1

f(k−2)
≤ 1 + 1 = 2.

Using the lower bounds from these equations: f(k) = 1
2
f(k − 1) + 1

f(k−2)
≥ 1

2
+ 1

2
= 1.

So 1 ≤ f(k) ≤ 2, which is what we needed to show.



3

CS 173, Spring 2016

Examlet 10, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Use (strong) induction to prove the following claim:

Claim:
∑n

p=2
1
p2

≤ 3
4
− 1

n
for all integers n ≥ 2

Solution: Proof by induction on n.

Base Case(s): At n = 2,
∑n

p=2
1
p2

= 1
4
≤ 3

4
− 1

2
. So the claim holds at n = 2.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that
∑n

p=2
1
p2

≤ 3
4
− 1

n

for n = 2, 3, . . . , k

Inductive Step: Notice that 1
(k+1)2

≤ 1
k(k+1)

= (k+1)−k

k(k+1)
= 1

k
− 1

(k+1)
.

So − 1
k
+ 1

(k+1)2
≤ − 1

(k+1)
.

So 3
4
− 1

k
+ 1

(k+1)2
≤ 3

4
− 1

(k+1)
.

By the inductive hypothesis, we know that
∑k

p=2
1
p2

≤ 3
4
− 1

k
. Using this fact and the above work, we

can compute:
∑k+1

p=2
1
p2

=
∑k

p=2
1
p2

+ 1
(k+1)2

≤ (3
4
− 1

k
) + 1

(k+1)2
≤ 3

4
− 1

(k+1)

So
∑k+1

p=2
1
p2

≤ 3
4
− 1

k+1
, which is what we needed to show.
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CS 173, Spring 2016

Examlet 10, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Let function f : Z+ → R be defined by

f(1) = 2

f(n) = 1
2
f(n− 1) + 5

2f(n−1)

Use (strong) induction to prove that 2 ≤ f(n) ≤ 5
2
for any positive integer n.

Solution:

Proof by induction on n.

Base Case(s): At n = 1, f(1) = 2. So clearly 2 ≤ f(1) ≤ 5
2
.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that 2 ≤ f(n) ≤ 5
2
, for

n = 1, 2, . . . , k − 1.

Inductive Step: From the inductive hypothesis, we know that 2 ≤ f(k − 1) ≤ 5
2
.

So 1 ≤ 1
2
f(k − 1) ≤ 5

4
.

And 2
5
≤ 1

f(k−1)
≤ 1

2
So 1 = 2

5
· 5
2
≤ 5

2f(k−1)
≤ 5

2
· 1
2
= 5

4

So 2 ≤ 1
2
f(k − 1) + 5

2f(k−1)
≤ 5

2
.

Thus 2 ≤ f(k) ≤ 5
2
, which is what we needed to show.
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CS 173, Spring 2016

Examlet 10, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Suppose that 0 < q < 1
2
. Use (strong) induction to prove the following claim:

Claim: (1 + q)n ≤ 1 + 2nq, for all positive integers n.

Solution:

Proof by induction on n.

Base Case(s): At n = 1, (1 + q)n = 1 + q Also 1 + 2nq = 1 + 2q. So (1 + q)n ≤ 1 + 2nq.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that (1+q)n ≤ 1+2nq,
for n = 1, 2, . . . , k.

Inductive Step: From the inductive hypothesis, we know that (1 + q)k ≤ 1 + 2kq.

At n = k + 1, we have

(1 + q)k+1 = (1 + q)(1 + q)k ≤ (1 + q)(1 + 2kq)

= 1 + q + 2kq + 2kq2 = 1 + q(1 + 2k + 2kq)

Recall that q < 1
2
, so 2kq < 2k−1. Also notice that 1 ≤ 2k−1. Using these facts, we get

(1 + q)k+1 ≤ = 1 + q(1 + 2k + 2kq) ≤ 1 + q(2k−1 + 2k + 2k−1) = 1 + 2k+1q

So (1 + q)k+1 ≤ 1 + 2k+1q, which is what we needed to show.
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CS 173, Spring 2016

Examlet 10, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Use (strong) induction to prove the following claim. You may use the fact that
√
2 ≤ 1.5.

Claim: For any positive integer n,
n∑

p=1

1
√
p
≥ 2

√
n + 1− 2.

Solution:

Proof by induction on n.

Base Case(s): At n = 1,
n∑

p=1

1
√
p
= 1. Also 2

√
n+ 1 − 2 = 2

√
2− 2 ≤ 2 · 1.5 − 2 = 1. So the claim

holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that

n∑

p=1

1
√
p

≥

2
√
n+ 1− 2 for n = 1, 2, . . . , k.

Inductive Step: First, notice that (
√
k + 1−

√
k + 2 )2 ≥ 0. Multiplying this out gives us (k+1)−

2
√
k + 1

√
k + 2 + (k + 2) ≥ 0. So 2k + 3 ≥ 2

√
k + 1

√
k + 2.

From the inductive hypothesis, we know that

k∑

p=1

1
√
p
≥ 2

√
k + 1− 2. So then

k+1∑

p=1

1
√
p

=
1

√
k + 1

+

k∑

p=1

1
√
p

≥
1

√
k + 1

+ 2
√
k + 1− 2

=
1

√
k + 1

+
2(k + 1)
√
k + 1

− 2 =
1 + 2(k + 1)

√
k + 1

− 2 =
2k + 3
√
k + 1

− 2

≥
2
√
k + 1

√
k + 2

√
k + 1

− 2 = 2
√
k + 2− 2

So
k+1∑

p=1

1
√
p
≥ 2

√
k + 2− 2, which is what we needed to show.


