Examlet 10, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Use (strong) induction to prove the following claim:

Claim: For any positive integer n, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \leq 2\sqrt{n}$

Solution:

Proof by induction on n.

Base Case(s): At n=1, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} = 1 \le 2 = 2 \cdot n$. So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $\sum_{n=1}^{n} \frac{1}{\sqrt{p}} \le 2\sqrt{n}$ for $n = 1, 2, \dots, k$.

Inductive Step:

First, notice that $(\sqrt{k} - \sqrt{k+1})^2 \ge 0$. Multiplying this out gives us $k - 2\sqrt{k}\sqrt{k+1} + (k+1) \ge 0$. So $2k+1 \ge 2\sqrt{k}\sqrt{k+1}$. ξ Using this inequality plus the inductive hypothesis, we can compute

$$\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}} = \left(\sum_{p=1}^{k} \frac{1}{\sqrt{p}}\right) + \frac{1}{\sqrt{k+1}}$$

$$\leq 2\sqrt{k} + \frac{1}{\sqrt{k+1}} = \frac{2\sqrt{k}\sqrt{k+1} + 1}{\sqrt{k+1}}$$

$$\leq \frac{(2k+1)+1}{\sqrt{k+1}} = \frac{2k+2}{\sqrt{k+1}} = \frac{2(k+1)}{\sqrt{k+1}} = 2\sqrt{k+1}$$

Examlet 10, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Let function $f: \mathbb{Z}^+ \to \mathbb{R}$ be defined by

$$f(1) = f(2) = 1$$

$$f(n) = \frac{1}{2}f(n-1) + \frac{1}{f(n-2)}$$

Use (strong) induction to prove that $1 \le f(n) \le 2$ for all positive integers n.

Hint: prove both inequalities together using one induction.

Solution:

Proof by induction on n.

Base Case(s): At n = 1 and n = 2, f(n) = 1. So $1 \le f(n) \le 2$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $1 \le f(n) \le 2$ for n = 1, 2, ..., k - 1.

Inductive Step: From the inductive hypothesis, we know that $1 \le f(k-1) \le 2$ and $1 \le f(k-2) \le 2$.

So
$$\frac{1}{2} \le \frac{1}{2}f(k-1) \le \frac{1}{2} \cdot 2 = 1$$
 and $\frac{1}{2} \le \frac{1}{f(k-2)} \le \frac{1}{1} = 1$.

Using the upper bounds from these equations: $f(k) = \frac{1}{2}f(k-1) + \frac{1}{f(k-2)} \le 1 + 1 = 2$.

Using the lower bounds from these equations: $f(k) = \frac{1}{2}f(k-1) + \frac{1}{f(k-2)} \ge \frac{1}{2} + \frac{1}{2} = 1$.

So $1 \le f(k) \le 2$, which is what we needed to show.

Examlet 10, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Use (strong) induction to prove the following claim:

Claim: $\sum_{p=2}^{n} \frac{1}{p^2} \le \frac{3}{4} - \frac{1}{n}$ for all integers $n \ge 2$

Solution: Proof by induction on n.

Base Case(s): At n = 2, $\sum_{p=2}^{n} \frac{1}{p^2} = \frac{1}{4} \le \frac{3}{4} - \frac{1}{2}$. So the claim holds at n = 2.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{p=2}^{n} \frac{1}{p^2} \leq \frac{3}{4} - \frac{1}{n}$ for $n = 2, 3, \dots, k$

Inductive Step: Notice that $\frac{1}{(k+1)^2} \le \frac{1}{k(k+1)} = \frac{(k+1)-k}{k(k+1)} = \frac{1}{k} - \frac{1}{(k+1)}$.

So $-\frac{1}{k} + \frac{1}{(k+1)^2} \le -\frac{1}{(k+1)}$.

So $\frac{3}{4} - \frac{1}{k} + \frac{1}{(k+1)^2} \le \frac{3}{4} - \frac{1}{(k+1)}$.

By the inductive hypothesis, we know that $\sum_{p=2}^{k} \frac{1}{p^2} \leq \frac{3}{4} - \frac{1}{k}$. Using this fact and the above work, we can compute:

$$\sum_{p=2}^{k+1} \frac{1}{p^2} = \sum_{p=2}^{k} \frac{1}{p^2} + \frac{1}{(k+1)^2} \le \left(\frac{3}{4} - \frac{1}{k}\right) + \frac{1}{(k+1)^2} \le \frac{3}{4} - \frac{1}{(k+1)}$$

So $\sum_{p=2}^{k+1} \frac{1}{p^2} \leq \frac{3}{4} - \frac{1}{k+1}$, which is what we needed to show.

Examlet 10, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Let function $f: \mathbb{Z}^+ \to \mathbb{R}$ be defined by

$$f(1) = 2$$

$$f(n) = \frac{1}{2}f(n-1) + \frac{5}{2f(n-1)}$$

Use (strong) induction to prove that $2 \le f(n) \le \frac{5}{2}$ for any positive integer n.

Solution:

Proof by induction on n.

Base Case(s): At n=1, f(1)=2. So clearly $2 \le f(1) \le \frac{5}{2}$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $2 \le f(n) \le \frac{5}{2}$, for n = 1, 2, ..., k - 1.

Inductive Step: From the inductive hypothesis, we know that $2 \le f(k-1) \le \frac{5}{2}$.

So
$$1 \le \frac{1}{2}f(k-1) \le \frac{5}{4}$$
.

And
$$\frac{2}{5} \le \frac{1}{f(k-1)} \le \frac{1}{2}$$
 So $1 = \frac{2}{5} \cdot \frac{5}{2} \le \frac{5}{2f(k-1)} \le \frac{5}{2} \cdot \frac{1}{2} = \frac{5}{4}$

So
$$2 \le \frac{1}{2}f(k-1) + \frac{5}{2f(k-1)} \le \frac{5}{2}$$
.

Thus $2 \le f(k) \le \frac{5}{2}$, which is what we needed to show.

Examlet 10, Part A

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

NETID:

(15 points) Suppose that $0 < q < \frac{1}{2}$. Use (strong) induction to prove the following claim:

Claim: $(1+q)^n \le 1 + 2^n q$, for all positive integers n.

Solution:

Proof by induction on n.

Base Case(s): At n = 1, $(1+q)^n = 1 + q$ Also $1 + 2^n q = 1 + 2q$. So $(1+q)^n \le 1 + 2^n q$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $(1+q)^n \le 1+2^nq$, for $n=1,2,\ldots,k$.

Inductive Step: From the inductive hypothesis, we know that $(1+q)^k \le 1 + 2^k q$.

At n = k + 1, we have

$$(1+q)^{k+1} = (1+q)(1+q)^k \le (1+q)(1+2^kq)$$

= 1+q+2^kq+2^kq^2 = 1+q(1+2^k+2^kq)

Recall that $q < \frac{1}{2}$, so $2^k q < 2^{k-1}$. Also notice that $1 \le 2^{k-1}$. Using these facts, we get

$$(1+q)^{k+1} \le = 1 + q(1+2^k+2^kq) \le 1 + q(2^{k-1}+2^k+2^{k-1}) = 1 + 2^{k+1}q$$

So $(1+q)^{k+1} \le 1 + 2^{k+1}q$, which is what we needed to show.

CS 173, Spring 2016 Examlet 10, Part A

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Use (strong) induction to prove the following claim. You may use the fact that $\sqrt{2} \le 1.5$.

Claim: For any positive integer n, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge 2\sqrt{n+1} - 2$.

Solution:

Proof by induction on n.

Base Case(s): At n = 1, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} = 1$. Also $2\sqrt{n+1} - 2 = 2\sqrt{2} - 2 \le 2 \cdot 1.5 - 2 = 1$. So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge 2\sqrt{n+1} - 2$ for n = 1, 2, ..., k.

Inductive Step: First, notice that $(\sqrt{k+1} - \sqrt{k+2})^2 \ge 0$. Multiplying this out gives us $(k+1) - 2\sqrt{k+1}\sqrt{k+2} + (k+2) \ge 0$. So $2k+3 \ge 2\sqrt{k+1}\sqrt{k+2}$.

From the inductive hypothesis, we know that $\sum_{p=1}^{k} \frac{1}{\sqrt{p}} \ge 2\sqrt{k+1} - 2$. So then

$$\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}} = \frac{1}{\sqrt{k+1}} + \sum_{p=1}^{k} \frac{1}{\sqrt{p}} \ge \frac{1}{\sqrt{k+1}} + 2\sqrt{k+1} - 2$$

$$= \frac{1}{\sqrt{k+1}} + \frac{2(k+1)}{\sqrt{k+1}} - 2 = \frac{1+2(k+1)}{\sqrt{k+1}} - 2 = \frac{2k+3}{\sqrt{k+1}} - 2$$

$$\ge \frac{2\sqrt{k+1}\sqrt{k+2}}{\sqrt{k+1}} - 2 = 2\sqrt{k+2} - 2$$

So $\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}} \ge 2\sqrt{k+2} - 2$, which is what we needed to show.