CS 173, Spring Examlet 10, Pa	1 N H; 1 1 1) :						
FIRST:	LAST	LAST:						
Discussion: Mon	nday 9 10	11 12	1 2	3 4	5			
1. (7 points) Suppose the $O(h(x))$ and $g(x)$ is O Solution: This is fall Suppose that $f(x) = g$ is not $O(h(x))$.	(h(x)). Must $f(x)g$ se.	(x) be $O(h(x))$)?					
2. (8 points) Check the (single) box that bes	st characterizes	s each ite	m.				
Suppose f and g produces positive outputs and f Will $f(n)$ be $O(g(n))$?	$(n) \ll g(n)$.	no 🗌	perha	aps	yes $\sqrt{}$			
T(1) = d $T(n) = 2T(n/2) + c$	$\Theta(\log n)$	$\Theta(n)$ $\sqrt{}$	$\Theta(n)$	$n \log n$	$\Theta(n^2)$			
n!	$O(2^n)$	$\Theta(2^n)$	neither o	of these $\sqrt{}$	/			
$n^{1.5}$ is	$\Theta(n^{1.414})$	$O(n^{1.414})$		neither of t	hese			

CS 173, Spring 2016

NETID: Examlet 10, Part B

FIRST: LAST:

Discussion: Monday 9 **10** 11 12 1 $\mathbf{2}$ 3 4 5

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2.

$$T(4) = 7 T(n) = 4T\left(\frac{n}{2}\right) + d$$

- (a) The height: $\log_2(n) 2$
- (b) Number of nodes at level k: 4^k
- (c) Sum of the work in all the leaves (please simplify): Each leaf contains the value 7, and there are $4^{\log_2 n-2} = \frac{1}{16} 4^{\log_2 n} = \frac{1}{16} n^2$ leaves. So the sum is $\frac{7}{16}n^2$.

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$30\log(n^{17})$$
 $\sqrt{n}+n!+18$ $\frac{n\log n}{7}$ $(10^{10^{10}})n$ $0.001n^3$ 2^n $8n^2$

Solution:

$$30\log(n^{17}) \ll (10^{10^{10}})n \ll \frac{n\log n}{7} \ll 8n^2 \ll 0.001n^3 \ll 2^n \ll \sqrt{n} + n! + 18$$

CS 173, Spring 2016 Examlet 10, Part B NETID:											
FIRST:				LAST:							
Discussion:	Monday	9 1	0 11	12	1	2	3	4	5		
1. (7 points) Sup Must f be $O(g)$ Solution: This)?	-									
2. (8 points) Chec	k the (single)	box that	best cha	racteriz	es eacl	n iten	n.				
T(1) = d $T(n) = T(n/2)$	+ c		($\Theta(\log n)$ $\Theta(n \log n)$				(n)			
T(1) = d $T(n) = T(n-1)$	(n) + n	$\Theta(n)$	$\Theta(n)$	(2) V	$\Theta(n)$	$n \log n$	n) [$\Theta(2^n$	·)]
Dividing a problems, each big- Θ running t	of size n/m ,		oest	c < m $c > m$			k = r $m = r$				
3^n is	$\Theta(5^n$	·)	$O(5^n$	(t) \(\sqrt{1}	n	neithe	r of	these]	

CS 173, Spring 2016 Examlet 10, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

10 11 12

1 2 3 4 **5**

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 7.

$$T(1) = 5$$

$$T(n) = 3T\left(\frac{n}{7}\right) + n^2$$

9

- (a) The height: $\log_7 n$.
- (b) The number of leaves (please simplify): $3^{\log_7 n} = 3^{\log_3 n \log_7 3} = n^{\log_7 3}$
- (c) Value in each node at level k: $(\frac{n}{7^k})^2$

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$2^{n} + 3^{n}$$

$$n^3$$

 $100 \log n$

 3^{31}

 $3n\log(n^3) 7n! + 2$

173n - 173

Solution:

$$3^{31} \ll 100 \log n \ll 173n - 173 \ll 3n \log(n^3) \ll n^3 \ll 2^n + 3^n \ll 7n! + 2$$

CS 173, Spring 2016 Examlet 10, Part B

NETID:

FIRST:

LAST:

Discussion:

Monday

10

12

1

 $\mathbf{2}$ 3 4 5

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 4.

11

$$T(4) = 7$$

$$T(n) = 2T\left(\frac{n}{4}\right) + d$$

9

- (a) The height: $\log_4(n) 1$
- (b) Number of nodes at level k: 2^k
- (c) Sum of the work in all the leaves (please simplify): Each leaf contains the value d, and there are $2^{\log_4 n - 1} = \frac{1}{2} 2^{\log 4} = \frac{1}{2} \sqrt{n}$ leaves. So the sum is $\frac{d}{2}\sqrt{n}$.

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$n \qquad n \log(17n)$$

$$n\log(17n)$$
 $\sqrt{n}+2^n+18$ $8n^2$ $2^n+n!$

$$8n^2$$

$$2^{n} + n!$$

 $2^{\log_4 n}$

 $0.001n^3 + 3^n$

Solution:

$$2^{\log_4 n} \ll n \ll n \log(17n) \ll 8n^2 \ll \sqrt{n} + 2^n + 18 \ll 0.001n^3 + 3^n \ll 2^n + n!$$

${ m CS}\ 173,{ m S}_{ m I} { m Examlet}\ 1$			D:					
FIRST:			LAS	Γ:				
Discussion:	Monday	9 10	11 12	1 2	3	4	5	
Solution: The and K such the But then if we 2. (8 points) Che	(x) is $O(h(x))$. nis is true. Since at $0 \le f(x) \le c$ let $p = cC$, we ck the (single) h	Must $f(x)$: $f(x)$ is O : $f(x)$ and O : have $O \le I$	g(x) be $O(h(x))g(h(x))$ and $g(x)g(x) \leq g(y) \leq Ch(x)g(x) \leq g(x)$	(h(x))? is $O(h(y))$ for every for every	(x)), the very $x \ge 0$	ere are $\geq k$ and	positive $y \ge K$.	
Suppose $f(n)$ is Will $g(n)$ be G $T(1) = c$	O(f(n))?	_	no 🗌	•	haps		yes	$\overline{\checkmark}$
T(n) = 0 $T(n) = 3T(n/3)$ Suppose $f(n)$ is Will $g(n)$ be C	is $O(g(n))$.	$\Theta(n)$	$\Theta(n^2)$ no	$\Theta(n \log n)$	g(n) haps	√ Θ √	$y(2^n)$ yes	
n^{log_25} grows	at th	faster t		slow	er than	n^2		