CS 173, S _I Examlet 1	$0, ext{Part B}$	NETII):						
FIRST:			LA	ST:					
Discussion:	Monday 9	10	11 12	2 1	2	3	4	5	
	pose that f , g , and $f(x)$ is $O(h(x))$. Mu				he rea	ls to	the 1	reals, such	that $f(x)$ i
2. (8 points) Chec	ck the (single) box	that bes	et character	izes ea	.ch ite	m.			
	g produce only as and $f(n) \ll g(n)$ $g(g(n))$?		no		perha	ps		yes [
T(1) = d $T(n) = 2T(n/2)$	$\Theta(\log n)$		$\Theta(n)$		$\Theta(n$	$\log n$)	Θ((n^2)
n!	$O(2^n)$		$\Theta(2^n)$	nei	ther o	f thes	se		
$n^{1.5}$ is	$\Theta(n^{1.414})$)	$O(n^{1.41}$	¹)]	neith	ıer of	these	

CS 173, Spring 2016	NETID.
Examlet 10, Part B	NETID:

FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2.

$$T(4) = 7 T(n) = 4T\left(\frac{n}{2}\right) + d$$

- (a) The height:
- (b) Number of nodes at level k:
- (c) Sum of the work in all the leaves (please simplify):

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$30\log(n^{17})$	$\sqrt{n} + n! + 18$	$n \log n$	$(10^{10^{10}})n$	$0.001n^3$	2^n	$8n^2$
$30\log(n)$	$\sqrt{n+n}$: ± 10	7	(10)	0.001n	4	on

CS 173, S _I Examlet 1		INET	TD:	11							
FIRST:				LAS	T :						
Discussion:	Monday	9 10	0 11	12	1	2	3	4	5		
1. (7 points) Sup Must f be $O(g)$		g are	function	ns from	the re	eals t	o the	e real	s, such	that j	f is $\Theta(g)$
2. (8 points) Chec	ck the (single)	box that	best cha	aracteriz	es eac	ch iter	m.				
T(1) = d $T(n) = T(n/2)$	1+c		•	$\Theta(\log n)$ $\Theta(n \log n)$	_			(n) n^2)			
T(1) = d $T(n) = T(n - 1)$	1) + n	$\Theta(n)$	$\Theta(r)$	n^2)	Θ($n \log r$	n)		$\Theta(2^n)$		
Dividing a proproblems, each				k < m			k = r	n			

 3^n is

big- Θ running time when

 $\Theta(5^n)$

 $O(5^n)$

neither of these

k > m km = 1

CS 173, Spring 2016	NETID.
Examlet 10, Part B	NETID:

FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 7.

$$T(1) = 5 T(n) = 3T\left(\frac{n}{7}\right) + n^2$$

- (a) The height:
- (b) The number of leaves (please simplify):
- (c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$2^{n} + 3^{n}$$
 n^{3} $100 \log n$ 3^{31} $3n \log(n^{3})$ $7n! + 2$ $173n - 173$

OC 172 Carrier 2016	
CS 173, Spring 2016	NIEGID
D 1 10 D 1 D	NETID:
Examlet 10, Part B	

FIRST:	LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 4.

$$T(4) = 7 T(n) = 2T\left(\frac{n}{4}\right) + d$$

- (a) The height:
- (b) Number of nodes at level k:
- (c) Sum of the work in all the leaves (please simplify):

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

n	$n\log(17n)$	$\sqrt{n} + 2^n + 18$	$8n^{2}$	$2^{n} + n!$	$2^{\log_4 n}$	$0.001n^3 + 3^n$
11	11 10g(1111)	$\sqrt{n+2} + 10$	on	$\angle +n$:	Z 4	0.001n + 3

CS 173, Spring 2016 Examlet 10, Part B										
FIRST:			LAST:							
Discussion:	Monday	9 1	.0 11	12	1	2	3	4	5	
. (7 points) Sup							ls to	the	reals, suc	ch that $f(x)$
O(h(x)) and $g($	(x) is $O(h(x))$.	Must $f($	(x)g(x) b	O(h(x))	h(x)))?				
(2) (3)										
(8 points) Chec	k the (single) b	oox that	best cha	racterize	s ea	ch ite	m.			
Suppose $f(n)$ is Will $g(n)$ be Θ			1	10		perha	aps		yes	
T(1) = c $T(n) = 3T(n/3)$)+n	$\Theta(n)$	$\Theta(r)$	a^2)	Θ	$(n \log$	n) [$\Theta(2^n)$	
Suppose $f(n)$ is Will $g(n)$ be O			1	10		perha	aps		yes	
log25		faste	er than n'	2	s	lower	than	n^2		
$n^{\log_2 5}$ grows	at th	o gamo i	rate as n^2	2					-	