
1

CS 173, Spring 2016

Examlet 11, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

01 DoIt(a1, . . . , an) \\ input is an array of n integers
02 if (n = 1) return a1

03 else
04 m = ⌊n

2
⌋

05 p = DoIt(a1, . . . , am) \\ constant time to extract part of array
06 q = DoIt(am+1, . . . , an) \\ constant time to extract part of array
06 return max(p,q)

1. (5 points) Suppose that T (n) is the running time of DoIt on an input array of length n and assume
that n is a power of 2. Give a recursive definition of T (n).

Solution:

T (1) = c

T (n) = 2T (n/2) + d

2. (4 points) What is the height of the recursion tree for T (n)?

Solution: log2 n

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at non-leaf level k of
this tree?

Solution: d · 2k

4. (3 points) What is the big-Theta running time of DoIt?

Solution: Θ(n)

2

CS 173, Spring 2016

Examlet 11, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

01 Act(a1, . . . , an) \\ input is a linked list of n integers
02 if (n = 1) return a1

03 else
04 m = ⌊n

2
⌋

05 p = Act(a1, . . . , am) \\ O(n) time to split list
06 q = Act(am+1, . . . , an) \\ O(n) time to split list
06 return max(p,q)

1. (5 points) Suppose that T (n) is the running time of Act on an input array of length n and assume
that n is a power of 2. Give a recursive definition of T (n).

Solution:

T (1) = c

T (n) = 2T (n/2) + dn + f

2. (4 points) What is the height of the recursion tree for T (n)?

Solution: log2 n

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at non-leaf level k of
this tree?

Solution: There are 2k nodes, each containing f + dn/2k. So the total is 2kf + dn

4. (3 points) What is the big-Theta running time of Act?

Solution: Θ(n log n)

3

CS 173, Spring 2016

Examlet 11, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

01 Weave(a1, . . . , an) \\ input is a sorted array of n integers
02 if (n = 1) return a1

03 else
04 m = ⌊n

2
⌋

05 if am > 0
06 return Weave(a1, . . . , am) \\ constant time to extract part of array
07 else
08 return Weave(am+1, . . . , an) \\ constant time to extract part of array

1. (5 points) Suppose that T (n) is the running time of Weave on an input array of length n and assume
that n is a power of 2. Give a recursive definition of T (n).

Solution:

T (1) = c

T (n) = T (n/2) + d

2. (4 points) What is the height of the recursion tree for T (n)?

Solution: log2 n

3. (3 points) How many leaves does this tree have?

Solution: One.

4. (3 points) What is the big-Theta running time of Weave?

Solution: Θ(log n)

4

CS 173, Spring 2016

Examlet 11, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

01 Grind(a1, . . . , an: an array of n positive integers, n ≥ 2)
02 if (n = 1) return 0
03 else if (n = 2) return a1 + a2

04 else
05 p = ⌊n/3⌋
06 q = ⌊2n/3⌋
07 rv = max(Grind(a1, . . . , ap), Grind(aq+1, . . . , an))
08 for i=p to q
09 rv = max(rv, ai + ai+1)
10 return rv

1. (5 points) Let T (n) be the running time of Grind. Give a recursive definition of T (n).

Solution:

T (2) = c

T (n) = 2T (n/3) + dn + f

2. (3 points) What is the height of the recursion tree for T (n), assuming n is a power of 3?

Solution: log3(n)

[If n is a power of 3, it will hit the n = 1 base case and not the n = 2 base case.]

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution:
dn

3k
2k + f2k

4. (4 points) How many leaves does this recursion tree have? Simplify so that your answer is easy to
compare to standard running times. Recall that logb x = loga x logb a.

Solution: 2log3 n = nlog32

5

CS 173, Spring 2016

Examlet 11, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

01 Pump(a1, a2, . . . an: list of real numbers)
02 if (n = 1) then return 0
03 else if (n = 2) then return |a1 − a2|
04 else
05 L = Pump(a2,a3,. . . ,an)
06 R = Pump(a1,a2,. . . ,an−1)
07 Q = |a1 − an|
08 return max(L,R,Q)

Removing the first element of a list takes constant time; removing the last element takes O(n) time.

1. (3 points) Give a succinct English description of what Pump computes.

Solution: Pump computes the largest difference between two values in its input list.

2. (4 points) Suppose T (n) is the running time of Pump. Give a recursive definition of T (n).

Solution: T (1) = d1 T (2) = d2

T (n) = 2T (n − 1) + cn + p

3. (4 points) What is the height of the recursion tree for T (n)?

Solution: We hit the base case when n−k = 2, where k is the level. So the tree has height n−2.

4. (4 points) How many leaves are in the recursion tree for T (n)?

Solution: 2n−2

6

CS 173, Spring 2016

Examlet 11, Part A
NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

01 WorkIt(a1, . . . , an: a list of n positive integers)
02 if (n = 1) return a1

03 else if (n = 2) return max(a1, a2)
04 else if (a1 < an)
05 return WorkIt(a2, . . . , an)
06 else
07 return WorkIt(a1, . . . , an−1)

Max takes constant time. Removing the last element of a list takes O(n) time.

1. (5 points) Let T (n) be the running time of WorkIt. Give a recursive definition of T (n).

Solution: T (1) = c

T (2) = d

T (n) = T (n − 1) + pn

2. (3 points) What is the height of the recursion tree for T (n)?

Solution: We hit the base case when n−k = 2, where k is the level. So the tree has height n−2.

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: Notice that the tree doesn’t branch, so there is only one node at each level. So the
total amount of work at level k is p(n − k).

4. (4 points) What is the big-theta running time of WorkIt? Briefly justify and/or show your work?

Solution:

Θ(n2)

[Much more detail than you needed to give:] Notice that the sum of all the non-leaf nodes is
n−3∑

k=1

p(n−k). If we move the constant p out of the summation and substitute in the new index value

j = n − k, we get

p
n−1∑

j=3

j = p
n−1∑

j=1

j) − 3 = p
(n − 1)n

2
− 3 =

p

2
n2 −

p

2
n − 3

The dominant term of this is proportional to n2.

