NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

```
01 \operatorname{DoIt}(a_1,\ldots,a_n) \setminus \operatorname{input} is an array of n integers

02 if (n=1) return a_1

03 else

04 \operatorname{m} = \lfloor \frac{n}{2} \rfloor

05 \operatorname{p} = \operatorname{DoIt}(a_1,\ldots,a_m) \setminus \operatorname{constant} time to extract part of array

06 \operatorname{q} = \operatorname{DoIt}(a_{m+1},\ldots,a_n) \setminus \operatorname{constant} time to extract part of array

06 return \operatorname{max}(p,q)
```

1. (5 points) Suppose that T(n) is the running time of DoIt on an input array of length n and assume that n is a power of 2. Give a recursive definition of T(n).

## **Solution:**

$$T(1) = c$$
$$T(n) = 2T(n/2) + d$$

2. (4 points) What is the height of the recursion tree for T(n)?

Solution:  $\log_2 n$ 

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at non-leaf level k of this tree?

Solution:  $d \cdot 2^k$ 

4. (3 points) What is the big-Theta running time of DoIt?

Solution:  $\Theta(n)$ 

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

```
01 \operatorname{Act}(a_1, \ldots, a_n) \setminus \operatorname{input} is a linked list of n integers

02 if (n = 1) return a_1

03 else

04 \operatorname{m} = \lfloor \frac{n}{2} \rfloor

05 \operatorname{p} = \operatorname{Act}(a_1, \ldots, a_m) \setminus \operatorname{O}(n) time to split list

06 \operatorname{q} = \operatorname{Act}(a_{m+1}, \ldots, a_n) \setminus \operatorname{O}(n) time to split list

06 return \operatorname{max}(p,q)
```

1. (5 points) Suppose that T(n) is the running time of Act on an input array of length n and assume that n is a power of 2. Give a recursive definition of T(n).

### **Solution:**

$$T(1) = c$$
  

$$T(n) = 2T(n/2) + dn + f$$

2. (4 points) What is the height of the recursion tree for T(n)?

Solution:  $\log_2 n$ 

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at non-leaf level k of this tree?

**Solution:** There are  $2^k$  nodes, each containing  $f + dn/2^k$ . So the total is  $2^k f + dn$ 

4. (3 points) What is the big-Theta running time of Act?

Solution:  $\Theta(n \log n)$ 

NETID:

FIRST: LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

- 01 Weave $(a_1, \ldots, a_n) \setminus \text{input is a sorted array of n integers}$ 02 if (n = 1) return  $a_1$ 03 else
  04 m =  $\lfloor \frac{n}{2} \rfloor$ 05 if  $a_m > 0$ 06 return Weave $(a_1, \ldots, a_m) \setminus \text{constant time to extract part of array}$ 07 else
  08 return Weave $(a_{m+1}, \ldots, a_n) \setminus \text{constant time to extract part of array}$
- 1. (5 points) Suppose that T(n) is the running time of Weave on an input array of length n and assume that n is a power of 2. Give a recursive definition of T(n).

### **Solution:**

$$T(1) = c$$
$$T(n) = T(n/2) + d$$

2. (4 points) What is the height of the recursion tree for T(n)?

Solution:  $\log_2 n$ 

3. (3 points) How many leaves does this tree have?

Solution: One.

4. (3 points) What is the big-Theta running time of Weave?

Solution:  $\Theta(\log n)$ 

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

```
01 Grind(a_1, \ldots, a_n): an array of n positive integers, n \ge 2
     if (n = 1) return 0
02
03
     else if (n = 2) return a_1 + a_2
04
     else
05
         p = |n/3|
06
         q = |2n/3|
         rv = max(Grind(a_1, ..., a_p), Grind(a_{q+1}, ..., a_n))
07
08
         for i=p to q
            rv = max(rv, a_i + a_{i+1})
09
10
         return rv
```

1. (5 points) Let T(n) be the running time of Grind. Give a recursive definition of T(n).

### **Solution:**

$$T(2) = c$$
  
$$T(n) = 2T(n/3) + dn + f$$

2. (3 points) What is the height of the recursion tree for T(n), assuming n is a power of 3?

Solution:  $\log_3(n)$ 

[If n is a power of 3, it will hit the n = 1 base case and not the n = 2 base case.]

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: 
$$\frac{dn}{3^k}2^k + f2^k$$

4. (4 points) How many leaves does this recursion tree have? Simplify so that your answer is easy to compare to standard running times. Recall that  $\log_b x = \log_a x \log_b a$ .

Solution:  $2^{\log_3 n} = n^{\log_3 2}$ 

NETID:

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

- 01 Pump $(a_1, a_2, \dots a_n)$ : list of real numbers)
- 02 if (n = 1) then return 0
- 03 else if (n = 2) then return  $|a_1 a_2|$
- 04 else
- $L = \text{Pump}(a_2, a_3, \dots, a_n)$
- 06 R = Pump $(a_1, a_2, \dots, a_{n-1})$
- 07  $Q = |a_1 a_n|$
- os return max(L,R,Q)

Removing the first element of a list takes constant time; removing the last element takes O(n) time.

1. (3 points) Give a succinct English description of what Pump computes.

**Solution:** Pump computes the largest difference between two values in its input list.

2. (4 points) Suppose T(n) is the running time of Pump. Give a recursive definition of T(n).

**Solution:**  $T(1) = d_1$   $T(2) = d_2$ 

T(n) = 2T(n-1) + cn + p

3. (4 points) What is the height of the recursion tree for T(n)?

**Solution:** We hit the base case when n-k=2, where k is the level. So the tree has height n-2.

4. (4 points) How many leaves are in the recursion tree for T(n)?

Solution:  $2^{n-2}$ 

**NETID:** 

FIRST:

LAST:

Discussion: Monday 9 10 11 12 1 2 3 4 5

01 WorkIt $(a_1, \ldots, a_n)$ : a list of n positive integers)

- o2 if (n = 1) return  $a_1$
- o3 else if (n = 2) return  $max(a_1, a_2)$
- else if  $(a_1 < a_n)$
- o5 return WorkIt $(a_2, \ldots, a_n)$
- 06 else
- o7 return WorkIt $(a_1, \ldots, a_{n-1})$

Max takes constant time. Removing the last element of a list takes O(n) time.

1. (5 points) Let T(n) be the running time of WorkIt. Give a recursive definition of T(n).

Solution: T(1) = c

T(2) = d

$$T(n) = T(n-1) + pn$$

2. (3 points) What is the height of the recursion tree for T(n)?

**Solution:** We hit the base case when n-k=2, where k is the level. So the tree has height n-2.

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

**Solution:** Notice that the tree doesn't branch, so there is only one node at each level. So the total amount of work at level k is p(n-k).

4. (4 points) What is the big-theta running time of WorkIt? Briefly justify and/or show your work?

#### **Solution:**

 $\Theta(n^2)$ 

[Much more detail than you needed to give:] Notice that the sum of all the non-leaf nodes is  $\sum_{n=3}^{n-3} p(n-k)$ . If we move the constant p out of the summation and substitute in the new index value j=n-k, we get

$$p\sum_{j=3}^{n-1} j = p\sum_{j=1}^{n-1} j - 3 = p\frac{(n-1)n}{2} - 3 = \frac{p}{2}n^2 - \frac{p}{2}n - 3$$

The dominant term of this is proportional to  $n^2$ .