FIRST:					LA	ST:	:				
Discussion:	Monday	9	10	11	12	2	1	2	3	4	5
(15 points) Check	k the (single) bo	ox tha	at best	chara	acteri	zes e	each	iten	n.		
T(1) = d $T(n) = 4T(n/2) - 4T(n/2$	+ n	Θ($n)$ $n^{\log_3 2})$]	,	$\log \log_2 3$	ŕ			$\Theta(n^2)$ $$ $\Theta(2^n)$ \square
Producing all part for a sentence.	rses	po	lynomi	al [ex	kpon	enti	al	$\sqrt{}$	in NP
The running timesively defined by					(n-1) $T(n/2)$,	_				$(-1) + cn$ $(n/2) + cn$ $\sqrt{}$
T(1) = d)		$\chi(m^2)$		7 0	V ~ 1	,	\	7 ($\mathcal{N}(2^n)$

$$T(n) = T(n-1) + n \qquad \qquad \Theta(n) \qquad \boxed{ } \qquad \Theta(n^2) \qquad \boxed{ } \qquad \Theta(n \log n) \qquad \boxed{ } \qquad \Theta(2^n) \qquad \boxed{ } \qquad \boxed{ }$$

The running time of Karatsuba's algorithm is recursively defined by T(1)=d and T(n)=

$$2T(n/2) + cn \qquad 3T(n/2) + cn \qquad \boxed{\checkmark}$$

$$4T(n/2) + cn$$
 $4T(n/2) + c$

CS 173, Spring 2016 Examlet 11, Part B NETID:
FIRST: LAST:
Discussion: Monday 9 10 11 12 1 2 3 4 5
(15 points) Check the (single) box that best characterizes each item.
$\Theta(n) \qquad \Theta(n \log n) \qquad \sqrt{}$ The running time of mergesort $\Theta(n^2) \qquad \Theta(2^n) \qquad \boxed{}$
$T(1) = d$ $T(n) = 2T(n/2) + c$ $\Theta(\log n) \square$ $\Theta(n) \qquad \Theta(n \log n) \square$ $\Theta(n^2) \square$
For a problem to satisfy the definition of NP, a "no" answer must have a succinct justification. true $\ $ false $\ $
This question had a typo of "x+2" for "x+1". We answered individual questions at the exam rat an posting a general correction because the latter would have given the question away.
Algorithm A takes $\log_2 n$ time. On one input, A takes x time. How long will it take if I double the input size? $x+1$ $\sqrt{}$ $2x$ $2x$ x^2 x^2
The chromatic number of a graph with n nodes can be found in polynomial time. true false not known $\sqrt{}$

CS 173, Spring 2016 Examlet 11, Part B NETID:
FIRST: LAST:
Discussion: Monday 9 10 11 12 1 2 3 4 5
(15 points) Check the (single) box that best characterizes each item.
The running time of the Towers of Hanoi solver is recursively defined by $T(1)=d$ and $T(n)=$ $2T(n-1)+c $ $2T(n-1)+c n $ $2T(n/2)+c $ $2T(n/2)+c n $
For a problem to satisfy the definition of co-NP, a "yes" answer must have a succinct justification. true $\ $ false $\ $
The running time of the Towers $\Theta(\log n)$ $\Theta(n\log n)$ $\Theta(n\log n)$ of Hanoi solver $\Theta(n^2)$ $\Theta(2^n)$ $O(2^n)$
$n^{\log_2 3}$ grows faster than n slower than n at the same rate as n
The Marker Making problem can be solved in polynomial true false not known $\sqrt{}$

Examlet 11, Pa			LAST	ף•					
rittsi.				L •					
Discussion: Mo	nday 9	10 11	12	1 2	2 3	4	5		
(6 points) Your partners of integers. Using Merg	-				, .		_		link
$Mergesort(L = (a_1, a_2))$	$,\ldots,a_n)) \setminus$	input is a	linked lis	t L con	taining	n int	egers		
Solution: if (n	=1) return L								
p = floor(n/2)									
Solution:								7	
$L_a=(a_1,\ldots$	• .								
$L_b = (a_{p+1}, $ return Mer	\ldots, a_n) ge(Mergesort(L_a), Merge	$\operatorname{esort}(L_b)$						
(9 points) Check the (six	ngle) box that	best chara	acterizes e	each ite	m.				
T(1) = d T(n) = 2T(n-1) + c	$\Theta(n)$	$\Theta(n^2)$) [($\Theta(n\log n)$	n)	Θ	(2^n)	$\sqrt{}$	
It takes exponential time a propositional logic ex- true by picking the rig its propositional variable	xpression can ht true/false	be made values for	true		false]	not known	
its propositional variable	es (e.g. p, q, r	·).	_						

CS 173, Spring 2016 Examlet 11, Part B NETID:					
FIRST: LAST:					
Discussion: Monday 9 10 11 12 1 2 3 4 5					
(15 points) Check the (single) box that best characterizes each item.					
Circuit satisfiability can be solved in exponential time. true $\sqrt{}$ false $\overline{}$ not known $\overline{}$					
$\Theta(n^2) \qquad \Theta(n^3) \qquad \Theta(n\log n) \qquad \\ \text{Karatsuba's integer} \\ \text{multiplication algorithm} \qquad \Theta(n^{\log_2 3}) \qquad \boxed{\checkmark} \qquad \Theta(n^{\log_3 2}) \qquad \qquad \Theta(2^n) \qquad $					
Marker Making polynomial exponential $\sqrt{}$ in NP					
The running time of mergesort is $\Theta(n^3)$. true false $\sqrt{}$					
$n^{\log_2 4}$ grows faster than n^2 slower than n^2 at the same rate as n^2					

CS 173, Spring 20 Examlet 11, Part	NETID:
FIRST:	LAST:
Discussion: Monda	y 9 10 11 12 1 2 3 4 5
(15 points) Check the (single) box that best characterizes each item.
The Travelling Salesman	polynomial exponential in NP $\sqrt{}$
Merging two sorted lists of numbers $\Theta(\log n)$	$\Theta(n)$ $\Theta(n)$ $\Theta(n \log n)$ $\Theta(n^2)$
The running time of the Towe of Hanoi solver	$\Theta(\log n)$ $\Theta(n \log n)$ $\Theta(n \log n)$ $\Theta(n^2)$ $\Theta(2^n)$ $O(2^n)$
T(1) = d $T(n) = 2T(n/4) + c$	$\Theta(\sqrt{n})$ $$ $\Theta(n)$ $$ $\Theta(n \log n)$ $$ $\Theta(n^2)$ $$ $\Theta(2^n)$ $$
Algorithm A takes 2^n time. input, A takes x time. How left take if I double the input s	ong will $x + 2$ $2x$ $2x$ 2^x x^2