CS 173, Sp Examlet 12	_	NETII	D:									
FIRST:				LAST	Γ:							
Discussion:	Monday	9 10	11	12	1	2	3	4	5			
(9 points) Let f X define its image $fInformally explain where$	(S) by $f(S) =$	$\{f(s)\in Y$	$ s \in$	S }. Is	it the	case	that	f(x)	$A) \cap$	f(B)	= f(A)	
Solution: Let X $A = \{a\}$ and $B = \{b\}$										$\in X$.	Suppos	e tha
(6 points) Check	the (single) box	that best	charac	eterizes	each i	item.						
How many ways c among 10 varietie number of bagels	es, if I can have	any	10! 5!5! 15! 10!5!			14! 0!4! 10 ⁵			14! 9!5! 5 ¹⁰	√		
Pascal's identity that $\binom{n+1}{k}$ is equal		$+\binom{n}{k+1}$		$\binom{n}{k}$ +	$\binom{n-1}{k}$			$\binom{n}{k}$) + ($\binom{n}{k-1}$		
If $f: \mathbb{R} o \mathbb{P}(\mathbb{Z})$ to	hen $f(17)$ is	one or		n intege			a se		inte			

CS 173, Spring 2016 Examlet 12, Part B NETID:	
FIRST:	LAST:
Discussion: Monday 9 10 11	12 1 2 3 4 5
Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = \{(p,q) \in \mathbb{R}^2\}$.	$\mathbb{R}^2 \mid (p-x)^2 + (q-y)^2 = 4$
(6 points) Answer the following questions:	
Describe (at a high level) the elements of $f(3,5)$:
Solution: The circle with radius 2 centered at (3, 5).
$f(0,0) \cap f(0,4) =$	
Solution: $\{(0,2)\}$	
The cardinality of (aka the number of elements i	n) T is:
Solution: infinite	
(7 points) Is T a partition of \mathbb{R}^2 ? For each of the why T does or doesn't satisfy that condition.	conditions required to be a partition, briefly explain
Solution: No, this is not a partition of the plate these circles jointly cover the whole plane. However overlapping sets.	ane. The output of f is never the empty set. And f , distinct circles share points, so f contains partly
(2 points) Check the (single) box that best chara	acterizes each item.
$ \{A \subseteq \mathbb{Z}_4 : A \text{ is even}\} $ 1 6	$7 \boxed{} 8 \boxed{\checkmark} \text{infinite} \boxed{}$

CS 173, Spring 2016 Examlet 12, Part B NETID:	
FIRST:	LAST:
Discussion: Monday 9 10 1	1 12 1 2 3 4 5
Graph G is at right. V is the set of nodes in G .	D E C
Define $f: V \to \mathbb{P}(V)$ by $f(p) = \{n \in V : \deg(n) \le \text{Let } P = \{f(p) \mid p \in V\}.$	$\{\deg(p)\}$, where $\deg(n)$ is the degree of node n.
(6 points) Fill in the following values:	
f(A) =	
Solution: $\{A, B, C, E\}$	
f(C) =	
Solution: $\{C\}$	
P =	
Solution: $\{\{C\}, \{A, B, C, E\}, \{A, B, C, E, F\},$	$\{A, B, C, D, E, F\}\}$
(7 points) Is P a partition of V ? For each of the why P does or doesn't satisfy that condition.	conditions required to be a partition, briefly explain
Solution: No, it is not a partition. It doesn't (good), but there is partial overlap among its members	contain the empty set (good), and it covers all of V bers (bad).
(2 points) Check the (single) box that best char	acterizes each item.
For all sets A and B , $\mathbb{P}(A \cap B) \subseteq \mathbb{P}(A \cup B)$.	always $\sqrt{}$ sometimes $\boxed{}$ never $\boxed{}$

	CS 173, Spring 2016 Examlet 12, Part B								
	FIRST:	LAST:							
	Discussion: Monday 9	10 11	12	1	2 3	4	5		
th	(9 points) Define $f: \mathbb{Z} \times \mathbb{Z}^+ \to \mathbb{P}(\mathbb{Z})$ at $k p$. Compare $f(r,k)$ and $f(r,p)$. Jus			$\mathbb{Z}:x$	=y+k	en for	some n	$\in \mathbb{Z}\}.$	Suppose
	Solution: $f(r,p)$ is a subset of $f(r,k)$ p must also differ by a multiple of k , but several equivalence classes mod p .								
	(6 points) Check the (single) box that	best charac	eterizes	each it	sem.				
	A partition of a set A contains \emptyset	alv	vays		someti	mes		never	$\sqrt{}$
	How many ways can I choose 6 bagels fr among 8 varieties, if I can have any number of bagels from any type?	$\frac{8!}{6!2!}$ $\frac{14!}{6!7!}$		13! 6!7! 8 ⁶		14 9!	38 S		
	If $f: \mathbb{N} \to \mathbb{P}(\mathbb{Q})$ then $f(3)$ is	a ra	ational tionals		а ро	ower s	et of ra	tionals lefined	

LAST:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
F

Define $f: M \to \mathbb{P}(V)$ by $f(n) = \{p \in V : d(p, F) = n\}$, where d(a, b) is the (shortest-path) distance between a and b. Let $P = \{f(n) \mid n \in M\}$.

(6 points) Fill in the following values:

$$f(0) =$$

Solution: $\{F\}$

f(1) =

Solution: $\{C, D, E\}$

P =

Solution: $\{\emptyset, \{F\}, \{C, D, E\}, \{A, B\}\}$

(7 points) Is P a partition of V? For each of the conditions required to be a partition, briefly explain why P does or doesn't satisfy that condition.

Solution: No, P is not a partition of V. The subsets cover all of V with no partial overlap. However, P contains the empty set, since $f(3) = f(4) = \emptyset$.

 $(2\ \mathrm{points})$ Check the (single) box that best characterizes each item.

Let A be a non-empty set, $\{A\}$ is a partition of A. always $\boxed{\hspace{1cm}}$ sometimes $\boxed{\hspace{1cm}}$ never $\boxed{\hspace{1cm}}$

	CS 173, Spring 2016 Examlet 12, Part B NETID:
	FIRST: LAST:
	Discussion: Monday 9 10 11 12 1 2 3 4 5
	(9 points) Recall that the symmetric difference of two sets A and B written $A \oplus B$ contains all the ements that are in one of the two sets but not the other. That is $A \oplus B = (A - B) \cup (B - A)$. For any t of integers A , let $[A] = \{B \in \mathbb{P}(\mathbb{Z}) \mid A \oplus B \text{ is finite }\}$
	Explain clearly what is in $[\{1,2,3\}]$. Also, is it true that $[\mathbb{Z}] = [\mathbb{N}]$? Briefly justify your answer.
	Solution:
	$[\{1,2,3\}]$ contains all finite sets of integers.
the	\mathbb{N} is in $[\mathbb{N}]$. However, \mathbb{N} can't be in $[\mathbb{Z}]$, since the symmetric difference between \mathbb{Z} and \mathbb{N} includes all e the negative integers and therefore is infinite. So $[\mathbb{Z}]$ cannot be equal to $[\mathbb{N}]$.
	(6 points) Check the (single) box that best characterizes each item.
	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ -1 $\boxed{}$ 0 $\boxed{}$ 1 $\boxed{\checkmark}$ 2 $\boxed{}$ undefined $\boxed{}$
	$\mathbb{P}(A \cup B) = \mathbb{P}(A) \cup \mathbb{P}(B)$ always sometimes $\sqrt{}$ never
	If you want to take 4 classes next semester, out of 35 classes being offered, how many different choices do you have? 35! 354 359