CS 173, Sp Examlet 12	•	NETI	ID:									
FIRST:				LAS	Γ:							
Discussion:	Monday	9 10	11	12	1	2	3	4	5			
(9 points) Let f define its image f aformally explain w	f(S) by $f(S) =$	$\{f(s)\in Y$	$Y \mid s \in$	S }. Is	it the	e case	e that	f(A)	$(1) \cap j$	r(B) =	= f(A)	
(6 points) Check	the (single) box	x that best	t charac	cterizes	each i	tem.						
How many ways of among 10 varieties number of bagels	es, if I can have	any	10! 5!5! 15! 10!5!		$\overline{10}$	14! 0!4! 10 ⁵		(14! 0!5!			
Pascal's identity that $\binom{n+1}{k}$ is equal	_	$+\binom{n}{k+1}$		$\binom{n}{k}$ +	$\binom{n-1}{k}$			$\binom{n}{k}$	$+$ $\binom{k}{k}$	$\begin{pmatrix} n \\ -1 \end{pmatrix}$		
If $f: \mathbb{R} \to \mathbb{P}(\mathbb{Z})$ t	hen $f(17)$ is	one (n intege			a se		integ ower	Γ		

infinite

Discussion: Monday 9 1 Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = 1$ Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = 1$ Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = 1$ Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = 1$ Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = 1$ Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = 1$ Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = 1$ Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = 1$ Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = 1$ Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = 1$ Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = 1$ Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = 1$ Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x,y) = 1$	10 11 12 1 2 3 4 5 $\{(p,q) \in \mathbb{R}^2 \mid (p-x)^2 + (q-y)^2 = 4\}$
Let $T = \{ f(x, y) \mid (x, y) \in \mathbb{R}^2 \}.$	$\{(p,q) \in \mathbb{R}^2 \mid (p-x)^2 + (q-y)^2 = 4\}$
(6 points) Answer the following question	
	ns:
Describe (at a high level) the elements of	of $f(3,5)$:
$f(0,0) \cap f(0,4) =$	
The cardinality of (aka the number of el	lements in) T is:
(7 points) Is T a partition of \mathbb{R}^2 ? For each why T does or doesn't satisfy that condition	ch of the conditions required to be a partition, briefly explain.

 $|\{A \subseteq \mathbb{Z}_4 : |A| \text{ is even}\}|$

FIRST:			LAS	T:			
Discussion:	Monday	9 10	$egin{array}{c c} & & & \\ \hline 11 & 12 & & \\ \end{array}$	1 2	3 4	5	
Graph G is at rig V is the set of no	ght. (A		[I		E	F	©
Define $f: V \to \mathbb{P}(V)$ Let $P = \{f(p) \mid p \in V\}$	$\begin{cases} f(p) & \text{if } p \\ V \end{cases}.$	$\in V : \deg(n)$	$d(p) \le \deg(p)$, where de	eg(n) is th	e degree	of node n.
(6 points) Fill in		alues:					
f(A) =	0						
()							
f(C) =							
P =							
(7 points) Is P a why P does or does			the condition	ns require	d to be a	partition	, briefly explai
(2 points) Check	the (single) bo	x that best c	haracterizes	each item			
For all sets A and	$d B, \mathbb{P}(A \cap B) \subseteq$	$\mathbb{P}(A \cup B).$	always	SC	ometimes		never

CS 173, Spring Examlet 12, P		ETID:							
FIRST:			LAS'	T:					
	onday 9			1			4 5		
(9 points) Define $f : \mathbb{Z}$ nat $k p$. Compare $f(r,k)$				$\mathbb{Z}:x$	= y -	+ <i>kn</i> 1	for som	$e \ n \in \mathbb{Z}$. Suppos
(6 points) Check the (si	ingle) box that	best chara	cterizes	each it	tem.				
A partition of a set A c	ontains \emptyset	al	ways		som	$_{ m etime}$	s	neve	er
How many ways can I ch	_	om $\frac{8!}{6!2!}$		13! 6!7!			14! 9!5!		
among 8 varieties, if I con number of bagels from a		<u>14!</u> 6!7!		8^{6}	i		68		
If $f: \mathbb{N} \to \mathbb{P}(\mathbb{Q})$ then f	(3) is	a r	ational		a	powe	r set of	rationals	5
, (() 011011		a set of ra	tionals				ι	ındefined	

FIRST:					LAS	T :						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		
Graph G is at right V is the set of node $M = \{0, 1, 2, 3, 4\}$	<i>(</i> ,			B	Ē				Ē	F		C
Define $f: M \to \mathbb{P}(V)$ between a and b . Let				(p, F)	$=n$ }, v	where	d(a,	b) is	the (s	shortes	st-path	n) distanc
(6 points) Fill in th	ne following v	alues:										
f(0) =												
f(1) =												
P =												
(7 points) Is P a pay				f the c	conditio	ns req	quired	l to b	e a pa	artitio	n, brie	fly explai
(2 points) Check th	ne (single) bo	x that	t best	charac	cterizes	each :	item.					
Let A be a non-em	pty set.											
$\{A\}$ is a partition of	- •			alwa	vs		some	timos	,	7	never	

always

sometimes

never

DIDOM					TAGG	Π						
FIRST:					LAST	L' :						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		
(9 points) Recal ments that are in of integers A , let	one of the two	sets bu	ut not	the o	ther. The							
Explain clearly w						$[\mathbb{Z}] =$	$[\mathbb{N}]$?	Brie	fly ju	stify	your an	iswer.
(6 points) Check	the (single) box	x that	best o	charac	eterizes o	each	item.					
(0)	, ,											
(0)	-1)] .	1	2			und	efine	ed _		
$\mathbb{P}(A \cup B) = \mathbb{P}(A)$	$\cup \mathbb{P}(B)$	8	always		SO	meti	mes			never		
If you want to take out of 35 classes				35! 31!4!		3	5^4					
different choices			J	35! 31!								