CS 173, S _l Examlet 1	oring 2010 3, Part A	6 N	ETII	D:								
FIRST:					LAS	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

(10 points) Recall that a phone lattice is a state diagram representing sequences of letters. Each edge in a phone lattice has a single letter on it. In a "deterministic" state diagram, if you look at any state s and any letter a, there is never more than one edge labelled a leaving state s.

Draw a deterministic phone lattice representing exactly the following set of words, using no more than 10 states and, if you can, no more than 8.

asap, sip, sap, clip, clap, aw

(5 points) Suppose we are making a deterministic phone lattice using a fixed set of n states and a fixed set of p different characters. (Deterministic means that each state has a single outgoing transition for each character.) In how many different ways could we construct a transition function for this lattice?

CS 173, Spring 2016 Examlet 13, Part B	NETI	D:									
FIRST:		LAST:									
Discussion: Monday	9 10	11	12	1	2	3	4	5			_
(5 points) Suppose that A and $B \times B$ is uncountable? Briefly justify			is known	n to b	oe un	count	able.	Can	we con	clude tl	ıat
(10 points) Check the (single) box	that best	chara	acterizes	each	item						
The set of chords (simultaneous combinations of notes) playable on an 88-key piano.	finite		coun	tably	infin	ite [uı	ıcounta	ble [
The set of all polynomials with real coefficients.	finite [count	ably	infini	te [un	countal	ole _	
The rational numbers have th same cardinality as the integers.	e true	e] fal	lse [no	ot kno	own			
The set of all (finite, unlabelled) graphs, where isomorphic graphs are treated as the same object.	finite		coun	tably	infin	ite [uı	ncounta	ble	
\mathbb{N}^2 has the same cardinality as \mathbb{N} .	true	e	fal	lse [no	ot kno	own			

CS 173, S Review, I	pring 2016 Part A	
FIRST:	LAST:	
Discussion:	Monday 9 10 11 12 1 2 3 4 5	
(5 points) Che	ck all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, E,$	F.
A	$C \longrightarrow E$ Reflexive: \square Irreflexive: \square	
	Symmetric: Antisymmetric:	
B	D F Transitive:	
(10 points) Che	ck the (single) box that best characterizes each item.	
$p \to q \equiv \neg q \to \neg$	true false	
-	egers p and q are relatively y if $\gcd(p,q)>1$. true false	
$\sum_{k=1}^{n+1} 2^k$	$2^{n+1} + 1$ $2^{n+2} - 1$ $2^{n+2} - 2$ $2^{n} - 2$ '	
If a function from it must be one-	m \mathbb{R} to \mathbb{R} is increasing, o-one. true false	
$g: \mathbb{Z} \to \mathbb{Z},$ $g(x) = x $	one-to-one not a function	

Review, Pa	art B		ETII							
FIRST:					LAST	Γ:				
Discussion:	Monday	9	10	11	12	1	2	3	4	5
` - /	-	-			_			_		The animals come in 5 choose his set of toys?
(10 points) Check	the (single) b	ox tha	at best	chara	acterizes	each	item			
All elements of M of X .	are also eleme	${ m ents}$	M	=X		M	$\subseteq X$			$X \subseteq M$
The number of education of the dimensional hypersulface of the state o	~		5		12		3:	2		64
The diameter of height h .	a full, comple	ete tre	ee of	$\leq h$ $2h$		<i>h</i> ≤	$\leq 2h$			h+1
W_n has a Euler c	ircuit.	alwa	ıys		somet	imes			neve	er 📗
Karatsuba's integ	er	(n^2) $(n^{\log_2 3})$]	$\Theta(n^3)$ $\Theta(n^{\log_3 2})$	[2) [$(n \log 2^n)$	g(n)