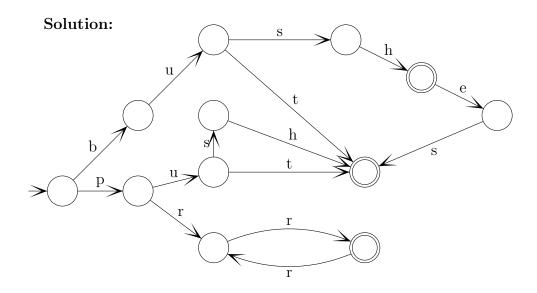
CS 173, Spring 2016 Examlet 13, Part A NETID:


FIRST:	LAST:
--------	-------

Discussion: Monday 9 10 11 12 1 2 3 4 5

(15 points) Recall that a phone lattice is a state diagram representing sequences of letters. Each edge in a phone lattice has a single letter on it. In a "deterministic" state diagram, if you look at any state s and any letter a, there is never more than one edge labelled a leaving state s.

Draw a deterministic phone lattice representing exactly the following set of words, using no more than 16 states and, if you can, no more than 13.

put, push, but, bush, bushes, prr, prrrr, prrrrr [i.e. p followed a non-zero, even number of r's]

Examlet 13				T A G							
FIRST:				LAST	Г':						
Discussion:	Monday	9 10	11	12	1	2	3	4	5		
(5 points) A blace 255. A color digitized picture	l picture consist	s of three	such a	`	,			_			
Solution: It's of only a finite number countable union of fi	_	tures with	that	,						٠,	
(10 points) Check	the (single) bo	x that bes	st char	acterizes	s each	item	.•				
The set of (unlab binary trees with 4 leaves.		finite		coun	ıtably	infin	ite	√	υ	ncount	able
$ A \times A > A $	t	erue	fa	lse		true	for s	ome s	sets		
There exist mather that cannot be coprogram.			e v	/ fa	alse		n	ot kr	ıown		
The real numbers		finite		countab	ly inf	inite			unco	untable	
$\mathbb{P}(\mathbb{Z})$	finite	Co	ountab	ly infini	te [un	ıcoun	table		

CS 173, Spring 2016 Review, Part A NETID:	
FIRST: LAST:	
Discussion: Monday 9 10 11 12 1 2 3 4 5	
(5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D\}$	0, E, F.
$A \longrightarrow C \longrightarrow E$ Reflexive: Irreflexive:	
Symmetric: Antisymmetric: $\sqrt{}$	
$B \longleftarrow D \longleftarrow F$ Transitive:	
(10 points) Check the (single) box that best characterizes each item.	
$p \lor q \equiv \neg p \to q$ true $\boxed{\hspace{0.2cm}}$ false $\boxed{\hspace{0.2cm}}$	
For all prime numbers p , there are exactly two natural numbers q such that $q \mid p$.	
$\sum_{k=0}^{n+1} 2^k \qquad \qquad 2^{n+1} + 1 \qquad \qquad 2^{n+2} - 1 \qquad \qquad 2^{n+2} - 2 \qquad \qquad 2^{n+1} - 1 $	
If $f: \mathbb{Z} \to \mathbb{R}$ is a function such that $f(x) = 2x$ then the real numbers is the image $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then the real numbers is the $f(x) = 2x$ then $f(x) = 2$	
$g: \mathbb{N} \to \mathbb{Z},$ $g(x) = x$ onto $$ not onto $$	

CS 173, Spring Review, Part		ETID:					
FIRST:	LAST:						
Discussion: Mo	onday 9	10 11	12 1	2	3 4	5	
(5 points) Suppose that	$t f: \mathbb{N} \to \mathbb{N}$ is	s such that j	f(n) = n!.	Give a re	ecursive d	efinition of	of f
Solution:							
f(0) = 1, and $f(n) = n$	f(n-1) for n	≥ 1 .					
You could also have use	d f(n+1) =	(n+1)f(n)	for $n \geq 0$.				
(10 points) Check the (single) box the	at best char	acterizes eac	ch item.			
Chromatic number of a graph with at least one	-	1	2 🗸	/	3	can't	tell
Number of edges in K_3 ,	4. 7	,	12 🗸	14		49	
A tree with n nodes has	$n \ { m edg}$ s $n/2 \ { m edg}$		$n-1$ ed $\log n$ ed		<u>√</u>] ≤	n edges	
T(1) = d $T(n) = 3T(n/3) + c$	$\Theta(\log$	n)	$\Theta(n)$ $\sqrt{}$	/	$\Theta(n \log n)$		$\Theta(n^2)$
If $f: \mathbb{R} \to \mathbb{P}(\mathbb{Z})$ then $f($,	a one or more	n integer [a set of	integers ower set	