CS 173, S _I Examlet 1	oring 2010 3, Part A	6 N	ETII	D:								
FIRST:					LAS	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		

(15 points) Recall that a phone lattice is a state diagram representing sequences of letters. Each edge in a phone lattice has a single letter on it. In a "deterministic" state diagram, if you look at any state s and any letter a, there is never more than one edge labelled a leaving state s.

Draw a deterministic phone lattice representing exactly the following set of words, using no more than 16 states and, if you can, no more than 13.

```
put, push, but, bush, bushes,
prr, prrrr, prrrrr .... [i.e. p followed a non-zero, even number of r's]
```

FIRST:					LAST	Γ:					
Discussion:	Monday	9	10	11	12	1	2	3	4	5	
(5 points) A black 5. A color digitized lor digitzed pictures	picture consist	ts of t	hree su	ıch ar							
(10 points) Check	the (single) be	ox tha	ıt best	chara	acterizes	each	item	١.			
The set of (unlaberative binary trees with 4 leaves.	. ,	fi	nite [count	tably	infin	ite		uncoun	table
$ A \times A > A $	1	true		fa	lse		true	for s	ome	sets	
There exist mathe that cannot be corprogram.			true		fal	se [n	ot kr	nown	
The real numbers		finite		,	countabl	y infi	inite]	uncountab	le
$\mathbb{P}(\mathbb{Z})$						_					

CS 173, Spring 201 Review, Part A	NETID:			
FIRST:		LAST:		
Discussion: Monday (5 points) Check all boxes that	9 10 11 at correctly charact	12 1 terize this rela	2 3 4 ation on the se	5 et $\{A, B, C, D, E, F\}$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sym	exive:	Irreflexive: Antisymme	tric:
(10 points) Check the (single) b	pox that best chara	acterizes each	item.	
$p \vee q \equiv \neg p \to q$	true	false		
For all prime numbers p , there two natural numbers q such that	+	ie	false	
$\sum_{k=0}^{n+1} 2^k \qquad \qquad 2^{n+1} + 1 $	$2^{n+2}-1$	2^{n+2}	- 2	$2^{n+1}-1 \qquad \boxed{}$
If $f: \mathbb{Z} \to \mathbb{R}$ is a function such $f(x) = 2x$ then the real numbe of f .	COM		co-domain	
$g: \mathbb{N} \to \mathbb{Z},$ onto	not onto	not	a function	

CS 173, Sp Review, Pa	_	6 N	ETII) :								
FIRST:					LAS	Γ:						
Discussion:	Monday	9	10	11	12	1	2	3	4	5		
(5 points) Suppo	se that $f: \mathbb{N}$ -	$\rightarrow \mathbb{N}$ is	s such	that f	(n) = r	ı!. Gi	ve a	recur	sive	definition	of f	
(10 points) Check	the (single) b	ox tha	at best	chara	cterizes	s each	item	1.				
Chromatic number graph with at least	_	e	1		2			3		can	't tell	
Number of edges	in $K_{3,4}$.	7	,		12		14			49		
A tree with n noo	des has	n edg $n/2 e$				1 edg $n edg$	Г		<u> </u>	$\leq n \text{ edges}$;	
T(1) = d $T(n) = 3T(n/3) + 3$	+ <i>c</i>	$\Theta(\log$	n) [$\Theta(n)$			$\Theta(n$ l	$\log n$)	$\Theta(n^2)$	
If $f: \mathbb{R} o \mathbb{P}(\mathbb{Z})$ to	hen $f(17)$ is		one or		n intege	_		a s		integers ower set		