NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Prove the following claim, using direct proof and your best mathematical style.

For any integers x, y, and z, if 100x + 10y + z is divisible by 9, then x + y + z is divisible by 9.

Hint: analyze the difference between 100x + 10y + z and x + y + z.

Solution: Let a, b, and c be integers and suppose that 100x + 10y + z is divisible by 9.

By the definition of divides, 100x + 10y + z = 9k, where k is an integer.

Notice that 100x + 10y + z = (99x + 9y) + (x + y + z). So (x + y + z) = (100x + 10y + z) - (99x + 9y). Substituting 100x + 10y + z = 9k into this, we get (x+y+z) = 9k - (99x+9y). So (x+y+z) = 9(k-11x-y).

Let m = k - 11x - y. m is an integer because k, x, and y are integers. So (x + y + z) = 9m, where m is an integer. So (x + y + z) is divisible by 9.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Prove the following claim, working directly from the definitions of "remainder" and "divides", and using your best mathematical style.

For all real numbers k, m, n and r ($n \neq 0$), if r = remainder(m, n), $k \mid m$, and $k \mid n$, then $k \mid r$.

Solution: Let k, m, n and r be real numbers $(n \neq 0)$. Suppose that $r = \operatorname{remainder}(m, n)$, $k \mid m$, and $k \mid n$.

By the definition of remainder, m = nq + r, where q is some integer. (Also r has to be between 0 and n, but that's not required here.) So r = m - nq.

By the definition of divides, m = ks and n = kt, for some integers s and t. Substituting these into the previous equation, we get

$$r = m - nq = ks - ktq = k(s - tq)$$

s-tq is an integer because s, t, and q are integers. So r is the product of k and an integer, which means that $k \mid r$.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Recall that a real number p is rational if there are integers m and n (n non-zero) such that $p = \frac{m}{n}$. Use this definition and your best mathematical style to prove the following claim:

For all real numbers x and y, $x \neq 0$, if x and $\frac{y+1}{2}$ are rational, then $\frac{5}{x} + y$ is rational.

Solution: Let x and y be real numbers, where $x \neq 0$. Suppose that x and $\frac{y+1}{2}$ are rational.

By the definition of rational, $x = \frac{m}{n}$ and $\frac{y+1}{2} = \frac{p}{q}$, where m, n, p, and q are rationals, n and q non-zero. Since x is non-zero, m is also non-zero.

Since $x = \frac{m}{n}$ and x is not zero, $\frac{5}{x} = \frac{5n}{m}$.

Since $\frac{y+1}{2} = \frac{p}{q}$, $y+1 = \frac{2p}{q}$. So $y = \frac{2p}{q} - 1 = \frac{2p-q}{q}$.

Combining these, we get that $\frac{5}{x} + y = \frac{5n}{m} + \frac{2p-q}{q} = \frac{5nq+2pm-qm}{mq}$. 5nq + 2pm - qm and mq are integers, since n, m, p, and q are integers. mq can't be zero because m and q are both non-zero. So $\frac{5}{x} + y$ is the ratio of two integers and therefore rational.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Recall that gcd(m, n) is the largest integer that divides both m and n. Use this definition, the definition of divides, and your best mathematical style to prove the following claim by contrapositive.

For all integers p and q, if p + 6q = 23 then $gcd(p,q) \neq 7$.

You must begin by explicitly stating the contrapositive of the claim:

Solution: Let's prove the contrapositive. That is, for all integers p and q, if gcd(p,q)=7, then $p+6q\neq 23$.

Let p and q be integers and suppose that gcd(p,q) = 7. Then $7 \mid p$ and $7 \mid q$ by the definition of gcd. By the definition of divides, this implies that p = 7m and q = 7n, for some integers m and n.

So p + 6q = 7m + 6(7n) = 7(m + 6n). This mean that p + 6q is divisible by 7. Since we know that 23 isn't divisible by 7, p + 6q can't be equal to 23.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) An integer k is a perfect square if $k = n^2$ where n is a non-negative integer. Prove the following claim:

For any integer p, if $p \ge 8$ and p+1 is a perfect square, then p is composite (aka not prime).

Solution: Let p be an integer and suppose that $p \geq 8$ and p+1 is a perfect square.

By the definition of a perfect square, $p+1=n^2$ where n is a non-negative integer. Then $p=n^2-1=(n+1)(n-1)$.

Since $p \ge 8$, $n^2 = p + 1 \ge 9 \ge 3^2$. Since n isn't negative, We must have $n \ge 3$. So then $n + 1 \ge n - 1 \ge 2$.

So we can factor p into two integers n+1 and n-1, neither of which can be one. So p is composite.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Prove the following claim, using your best mathematical style and the following definition of congruence mod k: $a \equiv b \pmod{k}$ if and only if a = b + nk for some integer n.

Claim: For all integers a, b, c, d, and k (k positive), if $a \equiv b \pmod{k}$ and $c \equiv d \pmod{k}$ then $a^2 + c \equiv b^2 + d \pmod{k}$.

Solution:

Let a, b, c, d, and k be integers, with k positive. Suppose that $a \equiv b \pmod{k}$ and $c \equiv d \pmod{k}$.

By the definition of congruence mod k, $a \equiv b \pmod{k}$ implies that a = b + nk for some integer n. Similarly, $c \equiv d \pmod{k}$ implies that c = d + mk for some integer m. Then we can calculate

$$a^{2} + c = (b + nk)^{2} + (d + mk) = b^{2} + 2bnk + n^{2}k^{2} + d + mk = b^{2} + d + k(2bn + n^{2}k + m)$$

If we let $p = 2bn + n^2k + m$, then we have $a^2 + c = (b^2 + d) + kp$. Also, p must be an integer since b, n, k, and m are integers. So, by the definition of congruence mod k, $a^2 + c \equiv b^2 + d \pmod{k}$.