Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Prove the following claim, using direct proof and your best mathematical style.

For any integers x, y, and z, if 100x + 10y + z is divisible by 9, then x + y + z is divisible by 9.

Hint: analyze the difference between 100x + 10y + z and x + y + z.

Name:_____ NetID:____ Lecture: \mathbf{A} \mathbf{B} Discussion: Thursday Friday 9 11 **12** 1 $\mathbf{2}$ 3 6 **10** 4 5

(15 points) Prove the following claim, working directly from the definitions of "remainder" and "divides", and using your best mathematical style.

For all real numbers k, m, n and r $(n \neq 0)$, if r = remainder(m, n), $k \mid m$, and $k \mid n$, then $k \mid r$.

Name:												
NetID:				Lecture:			\mathbf{A}	В				
Discussion	Thursday	Friday	Ω	10	11	19	1	2	2	1	5	G

(15 points) Recall that a real number p is rational if there are integers m and n (n non-zero) such that $p = \frac{m}{n}$. Use this definition and your best mathematical style to prove the following claim:

For all real numbers x and y, $x \neq 0$, if x and $\frac{y+1}{2}$ are rational, then $\frac{5}{x} + y$ is rational.

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Recall that gcd(m, n) is the largest integer that divides both m and n. Use this definition, the definition of divides, and your best mathematical style to prove the following claim by contrapositive.

For all integers p and q, if p + 6q = 23 then $gcd(p,q) \neq 7$.

You must begin by explicitly stating the contrapositive of the claim:

Name:_____ NetID:____ Lecture: \mathbf{A} \mathbf{B} Discussion: Thursday Friday 9 10 11 **12** 1 $\mathbf{2}$ 3 5 6 4

(15 points) An integer k is a perfect square if $k = n^2$ where n is a non-negative integer. Prove the following claim:

For any integer p, if $p \ge 8$ and p+1 is a perfect square, then p is composite (aka not prime).

Name:_____ NetID:____ Lecture: \mathbf{A} \mathbf{B} Discussion: Thursday Friday 9 10 11 **12** 1 $\mathbf{2}$ 3 6 4 5

(15 points) Prove the following claim, using your best mathematical style and the following definition of congruence mod k: $a \equiv b \pmod{k}$ if and only if a = b + nk for some integer n.

Claim: For all integers a, b, c, d, and k (k positive), if $a \equiv b \pmod{k}$ and $c \equiv d \pmod{k}$ then $a^2 + c \equiv b^2 + d \pmod{k}$.