Name:_____

NetID:_____

Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) $A = \{\text{oak, apple, maple, elm}\}$ $B = \{\text{tree, oak}, \emptyset\}$ $(A \times \emptyset) \cap B =$

Solution: $A \times \emptyset = \emptyset$ So $(A \times \emptyset) \cap B = \emptyset \cap B = \emptyset$

 $\{\frac{p}{q} : p \in \mathbb{Z}^+, q \in \mathbb{Z}^+, \text{ and } pq = 6\} =$

Solution: $\{\frac{p}{q} : p \in \mathbb{Z}^+, q \in \mathbb{Z}^+, \text{ and } pq = 6\} = \{\frac{1}{6}, \frac{2}{3}, \frac{3}{2}, 6\}$

2. (4 points) Check the (single) box that best characterizes each item.

For all positive integers n, if n! < -10, then n > 8.

true $\sqrt{}$

false

undefined

Let A and B be disjoint.

|A - B| = |A| - |B|

true for all sets A and B

false for all sets A and B

true for some sets A and B

3 🗸

3. (7 points) In \mathbb{Z}_7 , find the value of $[3]^{41}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 6$.

Solution: $[3]^2 = [9] = [2]$

 $[3]^4 = [2]^2 = [4]$

 $[3]^8 = [4]^2 = [16] = [2]$

 $[3]^{16} = [2]^2 = [4]$

 $[3]^{32} = [4]^2 = [2]$

 $[3]^{41} = [3]^{32} \cdot [3]^8 \cdot [3] = [2][2][3] = [12] = [5]$

Name:												
NetID:			_	$L\epsilon$	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A and B, $(A - B) \cup (B - A) \subseteq (A \cup B) - (A \cap B)$

Solution: This is true. An element of $(A - B) \cup (B - A)$ must be in exactly one of the two sets. So it must be in $(A \cup B)$ but not in $(A \cap B)$.

2. (4 points) Check the (single) box that best characterizes each item.

$A \times A = A$ (Assume $A \neq \emptyset$)	true for all sets true for some se		false for a	all sets A	$\sqrt{}$
$\{1,2\} \times \emptyset =$	Ø √ {∅}	$\{(1,\emptyset),(2,\emptyset)\}$ $\{1,2\}$		$\{1,2,\emptyset\}$ undefined	

3. (7 points) In \mathbb{Z}_9 , find the value of $[5]^{38}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 8$.

Solution: $[5]^2 = [25] = [7]$ $[5]^4 = [7]^2 = [49] = [4]$ $[5]^8 = [4]^2 = [16] = [7]$ $[5]^{16} = [7]^2 = [49] = [4]$ $[5]^{32} = [4]^2 = [16] = [7]$ $[5]^{38} = [5]^{32} \cdot [5]^4 \cdot [5]^2 = [7] \cdot [4] \cdot [7] = [28] \cdot [7] = [1] \cdot [7] = [7]$ Name:_______ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, $(A - B) - C \subseteq A - C$

Solution: This is true. Suppose that x is in (A - B) - C. Then x must be in A, but not in B or C. Since x is in A but not in C, x is in A - C.

2. (4 points) Check the (single) box that best characterizes each item.

|A - B| = |A| - |B| true for all sets A and B true for some sets A and B false for all sets A and B

false

undefined

For all reals n, if $n^2 = 101$, then n > 11.

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{21}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.

true

Solution:

$$[7]^2 = [49] = [10] = [-3]$$

$$[7]^4 = ([7]^2)^2 = [-3]^2 = [9]$$

$$[7]^8 = ([7]^4)^2 = [9]^2 = [81] = [3]$$

$$[7]^{16} = ([7]^8)^2 = [3]^2 = [9]$$

$$[7]^{21} = [7]^{16} \cdot [7]^4 \cdot [7] = [9] \cdot [9] \cdot [7] = [81] \cdot [7] = [3] \cdot [7] = [21] = [8]$$

В

Name:_____

NetID:_____ Lecture: A

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) $A = \{\text{earth, air, fire}\}$ $B = \{ (\text{fire, 3}), (\text{water, 2}) \}$ $C = \{ 1, 2, 3 \}$ $(A \times C) \cap B =$

Solution: $\{ (fire, 3) \}$

 $\{p+q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, pq=6\} =$

Solution: $\{7, -7, 5, -5\}$

2. (4 points) Check the (single) box that best characterizes each item.

 $\{1,2\} \times \{\emptyset\} = \emptyset \qquad \qquad \{(1,\emptyset),(2,\emptyset)\} \qquad \qquad \{1,2,\emptyset\} \qquad \qquad [0]$ $\{\emptyset\} \qquad \qquad \{1,2\} \qquad \qquad \text{undefined} \qquad \boxed{}$

3. (7 points) In \mathbb{Z}_9 , find the value of $[5]^{41}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 8$.

Solution: $[5]^2 = [25] = [7]$

$$[5]^4 = [7]^2 = [49] = [4]$$

$$[5]^8 = [4]^2 = [16] = [7]$$

$$[5]^{16} = [7]^2 = [49] = [4]$$

$$[5]^{32} = [4]^2 = [16] = [7]$$

$$[5]^{41} = [5]^{32} \cdot [5]^8 \cdot [5] = [7] \cdot [7] \cdot [5] = [49] \cdot [5] = [4] \cdot [5] = [20] = [2]$$

Name:____

NetID:_____ Lecture: A

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, if $A \times C \subseteq B \times C$, then $A \subseteq B$.

Solution: This is false. Suppose that $A = \{1, 2\}$, $B = \{10, 11\}$, and $C = \emptyset$. Then $A \times C = \emptyset = B \times C$, so $A \times C \subseteq B \times C$. But $A \not\subseteq B$.

2. (4 points) Check the (single) box that best characterizes each item.

 $\forall x \in \mathbb{N}$, if $x^2 < -3$, then x > 1000.

true $\sqrt{}$

false

undefined

В

ed ____

 $A \cap B \subseteq A$

true for all sets A and B

false for all sets A and B

true for some sets A and B

3. (7 points) In \mathbb{Z}_{17} , find the value of $[5]^{42}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 16$.

Solution:

$$[5]^2 = [25] = [8]$$

$$[5]^4 = [8]^2 = [64] = [-4]$$

$$[5]^8 = [-4]^2 = [16] = [-1]$$

$$[5]^{16} = [-1]^2 = [1]$$

$$[5]^{32} = [1]^2 = [1]$$

So

$$[5]^{42} = [5]^{32} \cdot [5]^8 \cdot [5]^2 = [1][-1][8] = [-8] = [9]$$

Name:_____

NetID:_____

Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) State the Inclusion Exclusion Principle/Formula for two sets.

Solution: For any sets A and B, $|A \cup B| = |A| + |B| - |A \cap B|$

2. (4 points) Check the (single) box that best characterizes each item.

 $\emptyset \times A = A \times \emptyset$

true for all sets A

true for some sets A

 $\sqrt{}$

false for all sets A

A ___

 $A \cap B = A \cup B$

true for all sets A and B

false for all sets A and B

true for some sets A and B

 $\sqrt{}$

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{19}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.

Solution:

$$[7]^2 = [49] = [10]$$

$$[7]^4 = [100] = [9]$$

$$[7]^8 = [9]^2 = [81] = [3]$$

$$[7]^{16} = [3]^2 = [9]$$

$$[7]^{19} = [7]^{16} \cdot [7]^{[2]} \cdot [7] = [9] \cdot [10] \cdot [7]$$

$$[9] \cdot [10] \cdot [7] = [90] \cdot [7] = [-1] \cdot [7] = [-7] = [6]$$

So
$$[7]^{19} = [6]$$