NetID:______ Lecture:

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) $A = \{\text{oak, apple, maple, elm}\}$ $B = \{\text{tree, oak}, \emptyset\}$ $(A \times \emptyset) \cap B =$

 $\left\{\frac{p}{q}: p \in \mathbb{Z}^+, q \in \mathbb{Z}^+, \text{ and } pq = 6\right\} =$

2. (4 points) Check the (single) box that best characterizes each item.

For all positive integers n, if n! < -10, then n > 8.

true

false

 \mathbf{A}

 \mathbf{B}

undefined

Let A and B be disjoint. |A - B| = |A| - |B|

true for all sets A and B false for all sets A and B

true for some sets A and B

3. (7 points) In \mathbb{Z}_7 , find the value of $[3]^{41}$. You must show your work, keeping all numbers in your calculations small. **You may not use a calculator.** You must express your final answer as [n], where $0 \le n \le 6$.

NetID:_____ Lecture: A

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A and B, $(A - B) \cup (B - A) \subseteq (A \cup B) - (A \cap B)$

2. (4 points) Check the (single) box that best characterizes each item.

 $A \times A = A$ (Assume $A \neq \emptyset$) true for all sets A true for some sets A

false for all sets A

 $\{1,2\} \times \emptyset = \emptyset$

Ø ____

 $\{(1,\emptyset),(2,\emptyset)\}\$

 $\{1,2,\emptyset\}$ undefined

 \mathbf{B}

3. (7 points) In \mathbb{Z}_9 , find the value of $[5]^{38}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 8$.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, $(A - B) - C \subseteq A - C$

2. (4 points) Check the (single) box that best characterizes each item.

|A - B| = |A| - |B|

true for all sets A and B false for all sets A and B

 ${\rm true}$

true for some sets A and B

For all reals n, if $n^2 = 101$, then n > 11.

false

undefined

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{21}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.

NetID:_____ Lecture: A

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) $A = \{\text{earth, air, fire}\}$ $B = \{ (\text{fire, 3}), (\text{water, 2}) \}$ $C = \{ 1, 2, 3 \}$ $(A \times C) \cap B =$

 $\{p+q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, pq = 6\} =$

2. (4 points) Check the (single) box that best characterizes each item.

 $A = \overline{A}$ (Assume the universe is not empty.)

true for all sets A false for all sets A

true for some sets A

 \mathbf{B}

 $\{1,2\} \times \{\emptyset\} =$

Ø _____

 $\{(1,\emptyset),(2,\emptyset)\}\$

 $\{1,2,\emptyset\}$ undefined

3. (7 points) In \mathbb{Z}_9 , find the value of $[5]^{41}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 8$.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, if $A \times C \subseteq B \times C,$ then $A \subseteq B.$

2. (4 points) Check the (single) box that best characterizes each item.

 $\forall x \in \mathbb{N}$, if $x^2 < -3$, then x > 1000.

true

false

undefined

 $A \cap B \subseteq A$

true for all sets A and B false for all sets A and B

true for some sets A and B

3. (7 points) In \mathbb{Z}_{17} , find the value of $[5]^{42}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 16$.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) State the Inclusion Exclusion Principle/Formula for two sets.

2. (4 points) Check the (single) box that best characterizes each item.

 $\emptyset \times A = A \times \emptyset$

true for all sets A

false for all sets A

true for some sets A

 $A \cap B = A \cup B$

true for all sets A and B

false for all sets A and B

true for some sets A and B

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{19}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.