NetID:____ Lecture: \mathbf{A} \mathbf{B} Discussion: Thursday Friday 9 **10** 11 **12** 1 $\mathbf{2}$ 3 6 4 5 Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by (a,b)T(p,q) if and only if $ab \mid p$ Working directly from the definition of divides, prove that T is transitive. NetID:_____ Lecture: \mathbf{A} \mathbf{B} Discussion: Thursday Friday 9 10 11 **12** 1 2 3 4 5 6 Let's define a relation R on \mathbb{Z}^3 as follows: (a, b, c)R(x, y, z) if and only if c = x, a = y, and b = z. Working directly from this definition, prove that R is antisymmetric. NetID:_____ Lecture: \mathbf{A} \mathbf{B} Discussion: Thursday Friday 9 10 11 **12** 1 2 3 4 5 6 Define the relation \sim on \mathbb{Z} by $x \sim y$ if and only if $5 \mid (3x + 7y)$ Working directly from the definition of divides, prove that \sim is transitive. NetID: Lecture: \mathbf{A} \mathbf{B} Discussion: Thursday Friday 9 **10** 11 **12** 1 2 3 4 5 6 Let's define the relation \succeq on \mathbb{N}^2 by $(x,y)\succeq (a,b)$ if and only if $x-a\geq 2$ and $y\geq b$. Prove that \succeq is transitive. NetID:_____ Lecture: A B Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6 A closed interval of the real line can be represented as a pair (c, r), where c is the center of the interval and r is its radius. Let $X = \{(c, r) \mid c, r \in \mathbb{R}, r \geq 0\}$ be the set of closed intervals represented this way. Now, let's define the interval containment \preceq on X as follows $$(c,r) \leq (d,q)$$ if and only if $r \leq q$ and $|c-d| + r \leq q$. Prove that \leq is antisymmetric. NetID:_ Lecture: \mathbf{A} \mathbf{B} Discussion: Thursday Friday 9 10 11 **12** 1 $\mathbf{2}$ 3 4 5 6 Let $A = \mathbb{N} \times \mathbb{N}$, i.e. pairs of natural numbers. Define a relation \gg on A as follows: $(x,y)\gg(p,q)$ if and only if there exists an integer $n\geq 1$ such that (x,y)=(np,nq). Prove that \gg is transitive.