NetID:____ Lecture: \mathbf{A} \mathbf{B}

Discussion: Thursday Friday 9 **10** 11 **12** 1 $\mathbf{2}$ 3 6 4 5

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

(a,b)T(p,q) if and only if $ab \mid p$

Working directly from the definition of divides, prove that T is transitive.

NetID:_____ Lecture: \mathbf{A} \mathbf{B}

Discussion: Thursday Friday 9 10 11 **12** 1 2 3 4 5 6

Let's define a relation R on \mathbb{Z}^3 as follows:

(a, b, c)R(x, y, z) if and only if c = x, a = y, and b = z.

Working directly from this definition, prove that R is antisymmetric.

NetID:_____ Lecture: \mathbf{A} \mathbf{B}

Discussion: Thursday Friday 9 10 11 **12** 1 2 3 4 5 6

Define the relation \sim on \mathbb{Z} by

 $x \sim y$ if and only if $5 \mid (3x + 7y)$

Working directly from the definition of divides, prove that \sim is transitive.

NetID: Lecture: \mathbf{A} \mathbf{B}

Discussion: Thursday Friday 9 **10** 11 **12** 1 2 3 4 5 6

Let's define the relation \succeq on \mathbb{N}^2 by

 $(x,y)\succeq (a,b)$ if and only if $x-a\geq 2$ and $y\geq b$.

Prove that \succeq is transitive.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

A closed interval of the real line can be represented as a pair (c, r), where c is the center of the interval and r is its radius. Let $X = \{(c, r) \mid c, r \in \mathbb{R}, r \geq 0\}$ be the set of closed intervals represented this way.

Now, let's define the interval containment \preceq on X as follows

$$(c,r) \leq (d,q)$$
 if and only if $r \leq q$ and $|c-d| + r \leq q$.

Prove that \leq is antisymmetric.

NetID:_ Lecture: \mathbf{A} \mathbf{B}

Discussion: Thursday Friday 9 10 11 **12** 1 $\mathbf{2}$ 3 4 5 6

Let $A = \mathbb{N} \times \mathbb{N}$, i.e. pairs of natural numbers.

Define a relation \gg on A as follows:

 $(x,y)\gg(p,q)$ if and only if there exists an integer $n\geq 1$ such that (x,y)=(np,nq).

Prove that \gg is transitive.