Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Let \sim be the relation defined on set of pairs $(x,y) \in \mathbb{R}^2$ such that $(x,y) \sim (p,q)$ if and only if $x^2 + y^2 = p^2 + q^2$. Find three elements in the equivalence class [(0,1)]

Solution:

(0,1), (1,0), (-1,0) (for example)

3. (5 points) Suppose that \leq is the relation between subsets of the integers such that $A \leq B$ if and only if $A - B = \emptyset$. (A and B are sets of integers, so A - B is a set difference.) Is \leq antisymmetric? Informally explain why it's true (e.g. use a Venn diagram) or give a concrete counter-example.

Solution: \leq is antisymmetric. Suppose that $X - Y = \emptyset$ and $Y - X = \emptyset$.

Notice that $X = (X \cap Y) \cup (X - Y)$. Draw a Venn diagram if this isn't clear. Since $X - Y = \emptyset$, we have $X = (X \cap Y)$.

Similarly, $Y - X = \emptyset$ implies that $Y = (X \cap Y)$.

So $X = X \cap Y = Y$.

[An annotated Venn diagram would work fine as an informal explanation.]

Name:												
NetID:				Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) A relation is a partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

Solution: reflexive, antisymmetric, transitive

3. (5 points) Suppose that T is the relation on the set of integers such that aTb if and only if gcd(a,b)=3. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: This relation is not transitive. Suppose a = 6, b = 15, and c = 12. Then gcd(a, b) = 3 and gcd(b, c) = 3, but gcd(a, c) = 6.

Name:												
NetID:				Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be symmetric.

Solution: For any $x, y \in A$, if xRy, then yRx.

3. (5 points) Suppose that R is the relation on \mathbb{Z}^4 such that (a,b,c,d)R(w,x,y,z) if and only if c=w, d=x, a=y, and b=z. Is R symmetric? Informally explain why it's true or give a concrete counter-example.

Solution: R is symmetric Suppose we have (a, b, c, d)R(w, x, y, z). Then c = w, d = x, a = y, and b = z. Rewriting these equations gives us y = a, z = b, w = c, and x = d. This means that (w, x, y, z)R(a, b, c, d).

Discussion:

9

Friday

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

10

11

12

1

 $\mathbf{2}$

3

4

5

6

2. (5 points) Let R be the relation on the integers such that aRb if and only if $2a \equiv -3b \pmod{5}$. Find three elements in the equivalence class [7].

Solution:

-3, 2, 7 (for example)

3. (5 points) Suppose that R is the relation on \mathbb{Z}^3 such that (a, b, c)R(x, y, z) if and only if c = x, a = y, and b = z. Is R transitive? Informally explain why it's true or give a concrete counter-example.

Solution: R is not transitive. We have

Thursday

$$(1,2,0)R(0,1,2)$$
 and $(0,1,2)R(2,0,1)$

but not

.

Name:												
NetID:				Le	cture	e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that S is the set of all binary strings (i.e. finite sequences of 1's and 0's). Suppose that \sim is the relation on S where $a \sim b$ if and only if a and b are the same length. For example, 01011 \sim 00010. List three members of [1111].

Solution: For example, 0101, 1101, and 0000.

3. (5 points) Let T be the relation on \mathbb{R}^2 such that (x,y)T(p,q) if and only if $(x,y)=\alpha(p,q)$ for some real number α . Is T symmetric? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: T is not symmetric. We have (0,0)T(p,q) by setting α to zero but not (3,4)T(0,0).

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Can a relation with at least one related pair (i.e. at least one arrow in a diagram) be irreflexive, symmetric, and also transitive? Either give such a relation or briefly explain why it's not possible to construct one.

Solution: No, this is not possible. Suppose R is our relation and let x and y be two elements such that xRy. Then yRx because it's symmetric. Then xRx because it's transitive. But xRx means that R can't be irreflexive.

3. (5 points) Suppose that \succeq is the relation between subsets of the integers such that $A \succeq B$ if and only if $A - B \neq \emptyset$. (A and B are sets of integers, so A - B is a set difference.) Is \succeq transitive? Informally explain why it's true or give a concrete counter-example.

Solution: \succeq is not transitive. Consider $A = C = \{3\}$ and $B = \{4\}$. Then $A - B = \{3\}$ and $B - C = \{4\}$. So $A \succeq B$ and $B \succeq C$. But $A - C = \emptyset$, so we don't have $A \succeq C$.