NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Let \sim be the relation defined on set of pairs $(x,y) \in \mathbb{R}^2$ such that $(x,y) \sim (p,q)$ if and only if $x^2 + y^2 = p^2 + q^2$. Find three elements in the equivalence class [(0,1)]

3. (5 points) Suppose that \leq is the relation between subsets of the integers such that $A \leq B$ if and only if $A - B = \emptyset$. (A and B are sets of integers, so A - B is a set difference.) Is \leq antisymmetric? Informally explain why it's true (e.g. use a Venn diagram) or give a concrete counter-example.

Name:_ NetID: Lecture: \mathbf{B} \mathbf{A} Discussion: Friday 9 11 1 $\mathbf{2}$ 3 **12** Thursday 10 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) A relation is a partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

3. (5 points) Suppose that T is the relation on the set of integers such that aTb if and only if gcd(a,b) = 3. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be symmetric.

3. (5 points) Suppose that R is the relation on \mathbb{Z}^4 such that (a,b,c,d)R(w,x,y,z) if and only if c=w, $d=x,\ a=y,$ and b=z. Is R symmetric? Informally explain why it's true or give a concrete counter-example.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Let R be the relation on the integers such that aRb if and only if $2a \equiv -3b \pmod{5}$. Find three elements in the equivalence class [7].

3. (5 points) Suppose that R is the relation on \mathbb{Z}^3 such that (a, b, c)R(x, y, z) if and only if c = x, a = y, and b = z. Is R transitive? Informally explain why it's true or give a concrete counter-example.

Name:												
NetID:				$\mathrm{L}\epsilon$	ectur	e :	${f A}$	В				
Discussion	Thursday	Friday	Q	10	11	19	1	2	3	1	5	6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that S is the set of all binary strings (i.e. finite sequences of 1's and 0's). Suppose that \sim is the relation on S where $a \sim b$ if and only if a and b are the same length. For example, 01011 \sim 00010. List three members of [1111].

3. (5 points) Let T be the relation on \mathbb{R}^2 such that (x,y)T(p,q) if and only if $(x,y)=\alpha(p,q)$ for some real number α . Is T symmetric? Informally explain why it is, or give a concrete counter-example showing that it is not.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Can a relation with at least one related pair (i.e. at least one arrow in a diagram) be irreflexive, symmetric, and also transitive? Either give such a relation or briefly explain why it's not possible to construct one.

3. (5 points) Suppose that \succeq is the relation between subsets of the integers such that $A \succeq B$ if and only if $A - B \neq \emptyset$. (A and B are sets of integers, so A - B is a set difference.) Is \succeq transitive? Informally explain why it's true or give a concrete counter-example.