Name:												
NetID:	NetID:			Lecture: A								
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
` - /	How many differ			_		de by	select	ting a	nd r	earrai	nging	letters
	The word ''met list of 7 from this	•						_				_
2. (10 points)	Check the (single	e) box that b	est o	characte	erizes e	each ite	em.					
f(x) = 2x t	\mathbb{R} is a function such the set of all the of f .			domain mage			co-dor none o	main of the	se [
$f: \mathbb{Z} \to \mathbb{Z}$ $f(x) = x + f(x) = x - f(x)$		onto $\sqrt{}$		not or	nto [not	a fur	ıctioı	n		
$g: \mathbb{Z} \to \mathbb{Z}$ $g(x) = \lfloor x \rfloor$	one-	to-one $\sqrt{}$		not o	ne-to-c	one [no	t a f	unctio	on [
choose from single color	l 12 mailboxes. and each mailbo . By the pigeon appears on exactly	ox is painted hole principl	with e, th	ı a		true			false	е 🐧	/	
$\exists y \in \mathbb{Z}, \ \forall x$	$\in \mathbb{Z}, \ y \le x$	true	е [false							

Name:_													
NetID:_			_	$L\epsilon$	cture:		\mathbf{A}	В					
Discussion	n: Thursday	Friday	9	10	11	12	1	2	3	4	5	6	
Society.	ts) 10 men and 15 How many different ing next to another r	ways can th		_			_				_		
Solution	on: There are 15! wa	ays to arrang	ge the	e wome	n.								
	nere are 16 places to arrange the men in			veen tv	vo won	nen or	at or	ne of	the e	nds.	We h	nave $\frac{16}{6!}$	<u>i!</u> !
So the	total number of differ	ent lines is i	is 15!	$\frac{16!}{6!}$.									
2. (10 poin	nts) Check the (single	e) box that l	best o	charact	erizes e	each it	em.						
	ion is onto if and on s the same as its co-d	* tri	ie		false								
	x + 3 (x even), $x - 21 (x odd)$	one-to-one]	not on	e-to-oı	ne		no	ot a fi	unctio	on [
$g: \mathbb{Z} \to g(x) =$	\mathbb{R} $x + 2.137$ onto		not o	onto [not	a fur	nction					
stamina	If has exactly one g a. If there are 10 elve e says that at least t	s, the pigeor	nhole		r	true			fals	e	\checkmark		
	$\forall x \in \mathbb{R}^+, \ xy = 1$ the positive real num	bers.)	true			false							

Name:												
NetID:			-	Lecture: A								
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1. (5 points) to $B \times C$?	Suppose that $ A $	= p, B = q	C	= n. If	How m	any dif	feren	t func	tions	are t	there	from A
Solution: to $B \times C$.	There are qn ele	ements in B	$\times C$.	So th	ere are	$e(qn)^p$	ways	to b	aild a	a func	ction	from A
2. (10 points)	Check the (single	e) box that b	est o	charact	erizes	each it	em.					
	from \mathbb{R} to \mathbb{R} is soft and only if it is	•	true			false						
$f: \mathbb{Z} \to \mathbb{Z}$ $f(x) = x + f(x) = x - f(x)$		onto		not or	nto [$\sqrt{}$	not	a fur	nction	n		
$g: \mathbb{R} \to \mathbb{Z}$ $g(x) = x $	on	e-to-one		not	one-to	o-one		n	ot a	funct	ion	$\sqrt{}$
choose from single color	l 12 mailboxes. n and each mailboxes. By the pigeon xes with the same	ox is painted shole princip	with	ı a		true]	false]	
$\exists y \in \mathbb{N}, \ \forall x$	$y \in \mathbb{N}, \ y \le x$	true	9	√	false							

Na	me:												
Ne	NetID:				Lecture:			A	В				
Dis	cussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1.		Suppose that $ A $ ify or show work.	= 3 and $ B $	S = 3	B. How	many	onto f	functi	ons ai	re th	ere fr	om A	1 to <i>B</i> ?
	one-to-one. to cover all	Since the two set If two inputs may of B. So we can functions from A	apped to the use the form	same	e outp	ıt valu	e, it w	ould	be im	poss	ible fo	or the	e image
2.	(10 points)	Check the (single	e) box that b	oest c	haract	erizes e	each it	em.					
	*	$\mathbb R$ is a function su hen the integers i			lomain mage	$\sqrt{}$		co-dor none c	nain of thes	se [
	$g: \mathbb{Z} \to \mathbb{Z}$ $g(x) = x $	one-to-or	ne 📗	not	one-to	-one	$\sqrt{}$	no	ot a fu	ıncti	on [
	$g: \mathbb{R} \to [0, g(x)] = \sin(x)$	- Onto	n	ot on	ito _		not a	funct	ion				
	stamina. If	as exactly one g there are 10 elve with the same git	es, there mus				true	√		false]	
	$\exists y \in \mathbb{N}, \ \forall x$	$\in \mathbb{Z}, \ x^2 = y$	tmi	. [\neg	folgo	. /]					

true

false

Na	me:												
Ne	NetID:		_	Lecture:			\mathbf{A}	\mathbf{B}					
Dis	cussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1.	Pigeonhole between 0 a	Let n and k be Principle to show and k (inclusive), be be very formal.)	w that there	are	two di	stinct	(i.e. r	ot eq	ual) i	nteg	$\operatorname{ers} i$	and j	i, both
	possible rer	For each power mainders, but the call them n^i and	re are $k+1$	powe	rs in o	ır list.	So the	ere ar	e two	pow	ers w	ith th	
2.	(10 points)	Check the (single	e) box that b	est o	haracte	erizes e	each it	em.					
		n is onto, then each			rue		fals	se [\checkmark				
	$g: \mathbb{R} \to \mathbb{R}^2$ $g(x) = (x, 3)$	$3x^2 + 2) on$	e-to-one	√	not	one-to	o-one		n	ot a	funct	ion	
	$f: \mathbb{N} \to \mathbb{R}$ $f(x) = x^2 +$	+ 2 onto	n	ot on	nto ,	/	not a	ı func	tion				
	If $f: A \to$ then	B is one-to-one,	$ A \ge A $	B [$ A \leq$	$\leq B $	$\sqrt{}$.	A =	B		
	$\exists t \in \mathbb{Z}^+, \ \forall t$	$p \in \mathbb{Z}^+, \ \gcd(p, t)$	= 1 tru	ie [false	е						

Name:												
NetID:		_	Le	Lecture:		\mathbf{A}	В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
, – ,	How many differe		string	gs can l	e mad	le be r	earraı	nging	the l	etters	in th	ne word
	There are 14 let number of possil		rith 2	copies	of c, 3	3 соріє	es of i	, 2 co	pies	of a,	and 2	2 copies
				14! 3!2!2!2!								
2. (10 points)	Check the (single	e) box that h	oest o	characte	erizes e	each it	em.					
	$\mathbb Z$ is a function su \mid then $\mathbb N$ is the $_$			domain mage			co-don none c		e [√		
$f: \mathbb{N}^2 \to \mathbb{N}$ $f(p,q) = pq$	0.10.0	to-one]	not or	ne-to-c	one [$\sqrt{}$	no	taf	unctio	on [
$g: \mathbb{Z} \to \mathbb{Z}$ $g(x) = x $	onto	n	ot or	nto 1	/	not a	a func	tion				
choose from single color	l 12 mailboxes. and each mailbo By the pigeon ppears on at leas	ox is painted hole principl	with le, th	ı a		true	√		false			
$\exists t \in \mathbb{N}. \ \forall n$	$\in \mathbb{Z}^+$, $\gcd(n,t) =$	= <i>p</i>	<u> </u>	1/	false							