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Working directly from the definition of divides, use (strong) induction to prove the following claim:

Claim: 2n+2 + 32n+1 is divisible by 7, for all natural numbers n.

Solution:

Proof by induction on n.

Base case(s): At n = 0, 2n+2 + 32n+1 = 22 + 3 = 7 which is clearly divisible by 7.

Inductive hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that 2n+2 + 32n+1 is divisible by 7, for n = 0, 1, . . . , k.

Rest of the inductive step:

At n = k + 1, 2n+2 + 32n+1 is equal to 2k+3 + 32k+3.

2k+3 + 32k+3 = 2 · 2k+2 + 9 · 32k+1 = 2(2k+2 + 32k+1) + 7(32k+1)

By the inductive hypothesis, 2k+2+32k+1 is divisible by 7. So 2(2k+2+32k+1) is divisible by 7. 7(33k+1)
is divisible by 7 because it contains a literal factor of 7 and the rest of the expression (33k+1) is an integer.
So the sum of these two terms must be divisible by 7.

Thus, 2k+3 + 32k+3 is divisible by 7, which is what we needed to show.
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If f is a function, recall that f ′ is its derivative. Recall the product rule: if f(x) = g(x)h(x), then
f ′(x) = g′(x)h(x) + g(x)h′(x). Assume we know that the derivative of f(x) = x is f ′(x) = 1.

Use (strong) induction to prove the following claim:

For any positive integer n, if f(x) = xn then f ′(x) = nxn−1.

Solution: Proof by induction on n.

Base case(s): n = 1. Then f(x) = x. So f ′(x) = 1. But also nxn−1 = 1 ·n0 = 1. So the claim holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that if f(x) = xn then
f ′(x) = nxn−1, for n = 1, . . . , k.

Rest of the inductive step: Suppose that f(x) = xk+1. Let g(x) = x and h(x) = xk. By the
product rule f ′(x) = g′(x)h(x) + g(x)h′(x).

Since g(x) = x, we know that g′(x) = 1. By the inductive hypothesis we know that h′(x) = kxk−1.

So f ′(x) = g′(x)h(x)+ g(x)h′(x) = 1 ·xk +x ·kxk−1. Simplifying, we get f ′(x) = xk +kxk = (1+k)xk.
So f ′(x) = (1 + k)xk, which is what we needed to show.
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Use (strong) induction to prove the following claim:

For any natural number n,
n∑

p=0

3(−1/2)p = 2 + (−1/2)n

Solution: Proof by induction on n.

Base case(s): At n = 0,

n∑

p=0

3(−1/2)p = 3 · (−1/2)0 = 3 and 2+ (−1/2)n = 2+ (−1/2)0 = 2+1 = 3.

So the equation holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that

n∑

p=0

3(−1/2)p = 2 + (−1/2)n for n = 0, . . . , k.

Rest of the inductive step: From the inductive hypothesis,

k∑

p=0

3(−1/2)p = 2 + (−1/2)k.

Then

k+1∑

p=0

3(−1/2)p = (

k∑

p=0

3(−1/2)p) + 3(−1/2)k+1

= (2 + (−1/2)k) + 3(−1/2)k+1 = 2 − 2(−1/2)k+1 + 3(−1/2)k+1

= 2 + (−1/2)k+1

So
k+1∑

p=0

3(−1/2)p = 2 + (−1/2)k+1, which is what we needed to show.
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Use (strong) induction to prove the following claim:

For all natural numbers n,
n∑

p=0

(2p + 1)2 =
(n + 1)(2n + 1)(2n + 3)

3

Solution: Proof by induction on n.

Base case(s): At n = 0,

n∑

p=1

(2p + 1)2 = 12 = 1 and (n+1)(2n+1)(2n+3)
3

= 1·1·3
3

= 1. So the equation

holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

n∑

p=0

(2p + 1)2 =
(n + 1)(2n + 1)(2n + 3)

3
for n = 0, . . . , k.

Rest of the inductive step: From the inductive hypothesis, we know that
k∑

p=0

(2p + 1)2 =
(k + 1)(2k + 1)(2k + 3)

3
.

Then

k+1∑

p=0

(2p + 1)2 = (
k∑

p=0

(2p + 1)2) + (2(k + 1) + 1)2 =
(k + 1)(2k + 1)(2k + 3)

3
+ (2(k + 1) + 1)2

=
(k + 1)(2k + 1)(2k + 3)

3
+ (2k + 3)2 = (2k + 3)

(k + 1)(2k + 1) + 3(2k + 3)

3

= (2k + 3)
(2k2 + 3k + 1) + (6k + 9)

3
= (2k + 3)

2k2 + 9k + 10

3
=

(k + 2)(2k + 3)(2k + 5)

3

So

k+1∑

p=0

(2p + 1)2 =
(k + 2)(2k + 3)(2k + 5)

3
, which is what we needed to show
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Let’s say that a set of polygonal regions in the plane is “properly colored” if regions sharing an edge
never have the same color.

Suppose that we draw n lines in the plane, in general position (no lines are parallel, no point belongs
to more than two lines). The lines divide up the plane into a set of regions. Use (strong) induction to
prove that, for any positive integer n, this set of regions can be properly colored with two colors.

Solution: Proof by induction on n.

Base case(s): For n = 1, there is exactly one line dividing the plane. We can color one side of it red
and the other side green.

Inductive hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that the set of regions
formed by n lines can be properly colored with two colors, for n = 1, . . . , k.

Rest of the inductive step:

Suppose that we are given k+1 lines in general position. Pick an arbitrary line L and remove it. By
the inductive hypothesis, we can find a coloring for the regions formed by the remaining lines in which
adjacent regions always have different colors.

Now, add L back (keeping the regions colored). Swap the two colors on the regions to one side of L.
Then

• Regions on the un-altered side of L have the colors they had before, so adjacent regions on this side
have different colors.

• Regions on the altered side of L have exactly the opposite colors they had before, so adjacent regions
on this side have different colors.

• Adjacent regions with L as their common boundary now have different colors, because one has its
original color and the other has had its color swapped.

So we have a proper coloring of the regions formed by our set of k + 1 lines.

[OK if you used pictures to help explain the construction in the inductive step.]
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Use (strong) induction to prove the following claim:

Claim: For all integers a, b, n, n ≥ 1, if a ≡ b (mod 7) then an ≡ bn (mod 7).

Use this definition in your proof: x ≡ y (mod p) if and only if x = y + kp for some integer k.

Solution:

Proof by induction on n.

Base case(s): At n = 1, our claim becomes “if a ≡ b (mod 7) then a ≡ b (mod 7)” which is clearly
true.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that if a ≡ b (mod 7)
then an ≡ bn (mod 7), for all integers a, b, n, where n = 1, . . . , k,

a and b need to be introduced at some point in this proof, but there’s several places you might do this.
For example, you could say “let a and b be integers” right at the start. Then your inductive hypothesis
would just be “if a ≡ b (mod 7) then an ≡ bn (mod 7), for n = 1, . . . , k.” We won’t get picky about this
when grading.

Rest of the inductive step:

Let a and b be integers.

Suppose that a ≡ b (mod 7). then a = b + 7p for some integer p.

From the inductive hypothesis, we know that ak ≡ bk (mod 7), So ak = bk + 7q for some integer q.

Combining these two equations, we get that

ak+1 = (b + 7p)(bk + 7q) = bk+1 + 7(pbk + bq + 7pq)

pbk + bq + 7pq is an integer since p, q, and b are integers. So we know that ak+1 ≡ bk+1 (mod 7),
which is what we needed to prove.


