NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) Use (strong) induction to prove that a - b divides $a^n - b^n$, for any integers a and b and any natural number n.

Hint: $(a^n - b^n)(a + b) = (a^{n+1} - b^{n+1}) + ab(a^{n-1} - b^{n-1})$, for any real numbers a and b.

Let a and b be integers.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) Suppose that $f: \mathbb{N}^2 \to \mathbb{N}$ is defined by

f(n,0) = f(n,n) = 1, for any natural number n

f(n,a) = f(n-1,a-1) + f(n-1,a), for all n and a such that $1 \le a \le n-1$

Use (strong) induction to prove that $f(n,a) = \frac{n!}{a!(n-a)!}$ for any natural numbers a and n, where $n \ge a$. Hint: use n as your induction variable. At each step, make sure the equations work for an arbitrary natural number $a \le n$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: [First deal with two special cases: f(k,0) and f(k,k).]

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) (20 points) Suppose that $f: \mathbb{N} \to \mathbb{Z}$ is defined by

$$f(0) = 2$$
 $f(1) = 5$ $f(2) = 15$

$$f(n) = 6f(n-1) - 11f(n-2) + 6f(n-3)$$
, for all $n \ge 3$

Use (strong) induction to prove that $f(n) = 1 - 2^n + 2 \cdot 3^n$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NetID:_____ Lecture: \mathbf{B} \mathbf{A}

Discussion: Thursday Friday 9 11 **12** 1 $\mathbf{2}$ 3 10 4 5 6

(20 points) Suppose that $f: \mathbb{N} \to \mathbb{N}$ is defined by

$$f(0) = 0 \qquad f(1) = 1$$

$$f(n) = f(n-1) + f(n-2)$$
 for all $n \ge 2$.

Let $a = \frac{1+\sqrt{5}}{2}$ and $b = \frac{1-\sqrt{5}}{2}$. Use (strong) induction to prove that $f(n) = \frac{a^n - b^n}{a - b}$.

First show that $a^2 = a + 1$ and $b^2 = b + 1$:

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NetID:____ Lecture: \mathbf{A} \mathbf{B}

Discussion: Thursday Friday 9 10 11 **12** 1 $\mathbf{2}$ 3 4 5 6

(20 points) Suppose that $g: \mathbb{Z}^+ \to \mathbb{Z}$ is defined by

$$g(1) = 1$$

$$g(2) = 8$$

$$g(n) = g(n-1) + 2g(n-2)$$

Use (strong) induction to prove that $g(n) = 3 \cdot 2^{n-1} + 2(-1)^n$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Fall 17

Examlet 8, Part A

6

Name:

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5} (p+1) = 4 \cdot 5 \cdot 6$. Use (strong) induction to prove that

$$\prod_{p=1}^{n} \frac{m+1-p}{p} = \frac{m!}{n!(m-n)!}$$

for any positive integers m and n where $m \ge n$. Hint: use n as your induction variable. At each step, make sure the equations work for an arbitrary integer $m \ge n$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: