Inductive Step:

Name:_____ NetID:____ Lecture: \mathbf{B} \mathbf{A} Friday 9 3 **12** 1 $\mathbf{2}$ Discussion: Thursday 10 11 4 5 6 (18 points) Here is a grammar G, with start symbol S and terminal symbols a and b. $S \rightarrow a S a \mid S a S \mid a N a$ $N \rightarrow a \mid b b$ Use (strong) induction to prove that any tree of height h matching (aka generated by) grammar Ghas at least h nodes with label a. Use A(T) as shorthand for the number of a's in a tree T. The induction variable is named _____ and it is the _____ of/in the tree. Base Case(s): Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:				Lecture:				\mathbf{B}				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
Lemon tree is a full by at most one. It is kith Fibonacci number The induction Base Case(s)	Prove that every mber. (Recall: F_0 variable is name	th the two characters Lemon tree $f_0 = 0$, $f_1 = 0$ and $f_1 = 0$	of he $F_2 =$ ad it i	ubtrees eight h 1) s the $_$	of eac	ch intens at l	rnal r least	node l F_{h+1} of/in	nave node	heigh s, wh	ts tha	t differ
Inductive St	ep:											

Name:												
NetID:			=	Lecture:				В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(18 points) So or blue, such that	uppose that G is	a connected	grap	oh. A I	Friendly	y color	ing o	f G la	bels	each	node	orange
	ns only one node, every node of G			0 /		e of the	e opp	osite o	color	•		
Use (strong) is remove any node is required if x is	. – –	operties requ	ired)	and co	-		_			•	_	
The induction	variable is name	ed an	d it i	is the _				of/in	the g	graph	1.	
Base Case(s)):											
Inductive H	ypothesis [Be s	specific, doi	n't j	ust ref	er to	"the	claim	ı"]:				
Inductive St	ep:											

Inductive Step:

Name:												
NetID:			_	Lecture:			A	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
 a full binary tree i If v is a leaf If v has two If v has two 	node, then v machildren of the schildren of different duction to show	de is colored by be colored ame color, the rent colors, to that the re	d orand oran	nge or nge or v is colv v is col f a Ha	blue, so blue. ored bl ored or opy tre	uch thue. cange.	at:	and c	only i	f the	e tree	has an
Base Case(s)	variable is name : : : : : : : : : : : : : : : : : : :								the tr	ree.		

Inductive Step:

Name:												
NetID:			_	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(18 points) Retree is a full binar of these patterns:	ecall that a node by tree such that											
	tree is a leaf and f both subtrees h	_						$y \equiv x$	- 1	(mo	d 3),	or
Use (strong) is where h is the heint (e.g. congruence in	~				·				_		,	, ,
The induction	variable is name	d an	nd it i	is the $_$				of/in	the t	ree.		
Base Case(s)):											
Inductive Hy	ypothesis [Be s	pecific, do	n't ji	ust re	fer to	"the	claim	ı"]:				

Name:												
NetID:				Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
Trim tree is a full by at most one. fact that $\sqrt{2} > 1$.	Recall that a nod l binary tree such Prove that every .4.	n the two ch Trim tree o	ild su of heig	ibtrees ght h c	of eacl ontains	h inter s at le	rnal n ast 2 ^h	ode h ^{e/2} lea	ave i	heigh You	ts tha	at differ
Base Case(s):											
Inductive H	ypothesis [Be s	pecific, do	n't ji	ust ref	er to	"the	claim	ı"]:				
Inductive St	tep:											