Inductive Step: Name:_____ NetID:____ Lecture: \mathbf{B} \mathbf{A} Friday 9 3 **12** 1 $\mathbf{2}$ Discussion: Thursday 10 11 4 5 6 (18 points) Here is a grammar G, with start symbol S and terminal symbols a and b. $S \rightarrow a S a \mid S a S \mid a N a$ $N \rightarrow a \mid b b$ Use (strong) induction to prove that any tree of height h matching (aka generated by) grammar Ghas at least h nodes with label a. Use A(T) as shorthand for the number of a's in a tree T. The induction variable is named _____ and it is the _____ of/in the tree. Base Case(s): Inductive Hypothesis [Be specific, don't just refer to "the claim"]: | Name: | | | | | | | | | | | | | |--|--|--|-----------------------|---------------------------------|--------|----------------|-----------------|------------------------|-----------|----------------|--------|----------| | NetID: | | | | Lecture: | | | | \mathbf{B} | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | Lemon tree is a full by at most one. It is kith Fibonacci number The induction Base Case(s) | Prove that every mber. (Recall: F_0 variable is name | th the two characters Lemon tree $f_0 = 0$, $f_1 = 0$ and $f_1 = 0$ | of he $F_2 =$ ad it i | ubtrees eight h 1) s the $_$ | of eac | ch intens at l | rnal r
least | node l F_{h+1} of/in | nave node | heigh
s, wh | ts tha | t differ | | | | | | | | | | | | | | | | Inductive St | ep: | | | | | | | | | | | | | Name: | | | | | | | | | | | | | |---|-------------------------------------|---------------|--------|----------|----------|----------|-------|---------|-------|-------|------|--------| | NetID: | | | = | Lecture: | | | | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | (18 points) So or blue, such that | uppose that G is | a connected | grap | oh. A I | Friendly | y color | ing o | f G la | bels | each | node | orange | | | ns only one node, every node of G | | | 0 / | | e of the | e opp | osite o | color | • | | | | Use (strong) is remove any node is required if x is | . – – | operties requ | ired) | and co | - | | _ | | | • | _ | | | The induction | variable is name | ed an | d it i | is the _ | | | | of/in | the g | graph | 1. | | | Base Case(s) |): | | | | | | | | | | | | | Inductive H | ypothesis [Be s | specific, doi | n't j | ust ref | er to | "the | claim | ı"]: | | | | | | Inductive St | ep: | | | | | | | | | | | | Inductive Step: | Name: | | | | | | | | | | | | | |--|---|--|--|---|--|------------------|-----|-------|--------|-------|--------|--------| | NetID: | | | _ | Lecture: | | | A | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | a full binary tree i If v is a leaf If v has two If v has two | node, then v machildren of the schildren of different duction to show | de is colored
by be colored
ame color, the
rent colors, to
that the re | d orand oran | nge or nge or v is colv v is col f a Ha | blue, so
blue.
ored bl
ored or
opy tre | uch thue. cange. | at: | and c | only i | f the | e tree | has an | | Base Case(s) | variable is name : : : : : : : : : : : : : : : : : : : | | | | | | | | the tr | ree. | | | Inductive Step: | Name: | | | | | | | | | | | | | |--|---|-------------|---------|-------------|--------|------|--------------|--------------|-------|------|-------|-----| | NetID: | | | _ | Lecture: | | | \mathbf{A} | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | (18 points) Retree is a full binar of these patterns: | ecall that a node
by tree such that | | | | | | | | | | | | | | tree is a leaf and
f both subtrees h | _ | | | | | | $y \equiv x$ | - 1 | (mo | d 3), | or | | Use (strong) is where h is the heint (e.g. congruence in | ~ | | | | · | | | | _ | | , | , , | | The induction | variable is name | d an | nd it i | is the $_$ | | | | of/in | the t | ree. | | | | Base Case(s) |): | | | | | | | | | | | | | Inductive Hy | ypothesis [Be s | pecific, do | n't ji | ust re | fer to | "the | claim | ı"]: | | | | | | Name: | | | | | | | | | | | | | |--|---|-----------------------------|-------------------|-------------------|--------------------|--------------------|------------------------------|-----------------------------|-------|--------------|--------|-----------| | NetID: | | | | Lecture: | | | \mathbf{A} | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | Trim tree is a full by at most one. fact that $\sqrt{2} > 1$. | Recall that a nod l binary tree such Prove that every .4. | n the two ch
Trim tree o | ild su
of heig | ibtrees ght h c | of eacl
ontains | h inter
s at le | rnal n
ast 2 ^h | ode h
^{e/2} lea | ave i | heigh
You | ts tha | at differ | | Base Case(s |): | | | | | | | | | | | | | Inductive H | ypothesis [Be s | pecific, do | n't ji | ust ref | er to | "the | claim | ı"]: | | | | | | Inductive St | tep: | | | | | | | | | | | |