
CS 173, Fall 17 Examlet 10, Part A 1

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) The operator
∏

is like
∑

except that it multiplies its terms rather than adding them.
So e.g.

∏
5

p=3
(p+ 1) = 4 · 5 · 6. Use (strong) induction to prove the following claim:

Claim: For any positive integer n and any positive reals a1, . . . , an,

n∏

p=1

(1 + ap) ≥ 1 +
n∑

p=1

ap

Solution:

Proof by induction on n.

Base Case(s): At n = 1,
∏n

p=1
(1+ap) = 1+a1 and 1+

∑n

p=1
ap = 1+a1 so

∏n

p=1
(1+ap) ≥ 1+

∑n

p=1
ap.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that
∏n

p=1
(1 + ap) ≥

1 +
∑n

p=1
ap for n = 1, . . . , k and any positive real numbers a1, . . . , an.

Inductive Step: Let a1, . . . , ak+1 be positive real numbers. By the inductive hypothesis, we know
that

∏k

p=1
(1 + ap) ≥ 1 +

∑k

p=1
ap. Then we have

k+1∏

p=1

(1 + ap) = (1 + ak+1)
k∏

p=1

(1 + ap)

≥ (1 + ak+1)(1 +

k∑

p=1

ap) = 1 + ak+1 + ak+1

k∑

p=1

ap +

k∑

p=1

ap

≥ 1 + ak+1 +

k∑

p=1

ap because all values ap are positive

= 1 +
k+1∑

p=1

ap

So
∏k+1

p=1
(1 + ap) ≥ 1 +

∑k+1

p=1
ap, which is what we needed to show.
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Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim: For all integers n ≥ 2, (2n)! > 2nn!

Solution:

Proof by induction on n.

Base Case(s): At n = 2, (2n)! = 4! = 24. 2nn! = 4 · 2 = 8. So (2n)! > 2nn!

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that (2n)! > 2nn! for all n = 2, 3, . . . , k for some integer k ≥ 2.

Inductive Step: Notice that 2k + 1 ≥ 1 because k is positive. And (2k)! > 2kk! by the induction
hypothesis.

So then

(2(k + 1))! = (2k + 2)(2k + 1)(2k)! ≥ (2k + 2)(2k)! > (2k + 2)(2kk!) = (k + 1)2k+1k! = 2k+1(k + 1)!.

So (2(k + 1))! > 2k+1(k + 1)! which is what we needed to show.
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Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim: For any sets A1, A2, . . . , An, |A1 ∪ A2 ∪ . . . ∪ An| ≤ |A1|+ |A2|+ . . .+ |An|

Solution:

Proof by induction on n.

Base Case(s): At n = 1 the claim reduces to |A1| ≤ |A1|, which is clearly true.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that |A1 ∪ A2 ∪ . . . ∪ An| ≤ |A1| + |A2| + . . . + |An|, for any sets A1, A2, . . . , An, where
n = 1, 2, . . . , k.

Inductive Step: Let A1, A2, . . . , Ak+1 be sets. Let S = A1 ∪A2 ∪ . . . ∪ Ak.

We know that |S∪Ak+1| = |S|+|Ak+1|−|S∩Ak+1| by the Inclusion-Exclusion formula. So |S∪Ak+1| ≤
|S|+ |Ak+1| because |S ∩Ak+1| cannot be negative.

By the inductive hypothesis |S| = |A1 ∪A2 ∪ . . . ∪ Ak| ≤ |A1|+ |A2|+ . . .+ |Ak|.
So |A1 ∪ A2 ∪ . . . ∪Ak+1| = |S ∪Ak+1| ≤ |S|+ |Ak+1| ≤ (|A1|+ |A2|+ . . .+ |Ak|) + |Ak+1|.
So |A1 ∪ A2 ∪ . . . ∪Ak+1| ≤ |A1|+ |A2|+ . . .+ |Ak+1|, which is what we needed to prove.
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(15 points) Use (strong) induction to prove the following claim. You may use the fact that
√
2 ≤ 1.5.

Claim: For any positive integer n,
n∑

p=1

1√
p
≥ 2

√
n + 1− 2.

Solution:

Proof by induction on n.

Base Case(s): At n = 1,
n∑

p=1

1√
p
= 1. Also 2

√
n+ 1 − 2 = 2

√
2− 2 ≤ 2 · 1.5 − 2 = 1. So the claim

holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that

n∑

p=1

1√
p

≥

2
√
n+ 1− 2 for n = 1, 2, . . . , k.

Inductive Step: First, notice that (
√
k + 1−

√
k + 2 )2 ≥ 0. Multiplying this out gives us (k+1)−

2
√
k + 1

√
k + 2 + (k + 2) ≥ 0. So 2k + 3 ≥ 2

√
k + 1

√
k + 2.

From the inductive hypothesis, we know that
k∑

p=1

1√
p
≥ 2

√
k + 1− 2. So then

k+1∑

p=1

1√
p

=
1√
k + 1

+

k∑

p=1

1√
p

≥ 1√
k + 1

+ 2
√
k + 1− 2

=
1√
k + 1

+
2(k + 1)√

k + 1
− 2 =

1 + 2(k + 1)√
k + 1

− 2 =
2k + 3√
k + 1

− 2

≥ 2
√
k + 1

√
k + 2√

k + 1
− 2 = 2

√
k + 2− 2

So

k+1∑

p=1

1√
p
≥ 2

√
k + 2− 2, which is what we needed to show.
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(15 points) Let function f : Z+ → N be defined by

f(1) = 0

f(n) = 1 + f(⌊n/2⌋), for n ≥ 2,

Use (strong) induction on n to prove that f(n) ≤ log2 n for any positive integer n. You cannot
assume that n is a power of 2. However, you can assume that the log function is increasing (if x ≤ y then
log x ≤ log y) and that ⌊x⌋ ≤ x.

Solution:

Proof by induction on n.

Base Case(s):

f(1) = 0 and log2 1 = 0 So f(1) ≤ log2 1.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that f(n) ≤ log2 n for n = 1, . . . , k − 1.

Inductive Step:

We can assume that k ≥ 2 (since we did n = 1 for the base case). So ⌊k/2⌋ must be at least 1 and
less than k. Therefore, by the inductive hypothesis, f(⌊k/2⌋) ≤ log2(⌊k/2⌋).

We know that f(k) = 1 + f(⌊k/2⌋), by the definition of f . Substituting the result of the previous
paragraph, we get that f(k) ≤ 1 + log2(⌊k/2⌋).

⌊k/2⌋ ≤ k/2. So log2(⌊k/2⌋) ≤ log2(k/2) = (log2 k) + (log2 1/2) = (log2 k)− 1.

Since f(k) ≤ 1 + log2(⌊k/2⌋) and log2(⌊k/2⌋) ≤ (log2 k)− 1, f(k) ≤ 1 + (log2 k)− 1 = (log2 k). This
is what we needed to show.
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Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) The operator
∏

is like
∑

except that it multiplies its terms rather than adding them.
So e.g.

∏
5

p=3
(p+ 1) = 4 · 5 · 6. Use (strong) induction to prove the following claim:

Claim: For any positive integer n, and any positive reals a1, . . . , an,

n∏

p=1

(1− ap) ≥ 1−
n∑

p=1

ap

Solution:

This problem should have also required that a1, . . . , an be ≤ 1. This shouldn’t have a
major impact on grading because it looks like many folks assumed the critical step would
work.

Proof by induction on n.

Base Case(s): At n = 1,
∏n

p=1
(1−ap) = 1−a1 and 1−

∑n

p=1
ap = 1−a1 so

∏n

p=1
(1−ap) ≥ 1−

∑n

p=1
ap.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that
∏n

p=1
(1 − ap) ≥

1−
∑n

p=1
ap for n = 1, . . . , k and any real numbers a1, . . . , an between 0 and 1 (inclusive).

Inductive Step: Let a1, . . . , ak+1 be real numbers between 0 and 1 (inclusive). By the inductive
hypothesis, we know that

∏k

p=1
(1 − ap) ≥ 1 − ∑k

p=1
ap. Since (1 − ak+1) is positive, this means that

(1− ak+1)
∏k

p=1
(1− ap) ≥ (1− ak+1)(1−

∑k

p=1
ap). Then we have

k+1∏

p=1

(1− ap) = (1− ak+1)
k∏

p=1

(1− ap)

≥ (1− ak+1)(1−
k∑

p=1

ap) = 1− ak+1 + ak+1

k∑

p=1

ap −
k∑

p=1

ap

≥ 1− ak+1 −
k∑

p=1

ap because all values ap are positive

= 1−
k+1∑

p=1

ap

So
∏k+1

p=1
(1− ap) ≥ 1−

∑k+1

p=1
ap, which is what we needed to show.


