NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5} (p+1) = 4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

Claim: For any positive integer n and any positive reals a_1, \ldots, a_n ,

$$\prod_{p=1}^{n} (1 + a_p) \ge 1 + \sum_{p=1}^{n} a_p$$

Solution:

Proof by induction on n.

Base Case(s): At n = 1, $\prod_{p=1}^{n} (1+a_p) = 1+a_1$ and $1+\sum_{p=1}^{n} a_p = 1+a_1$ so $\prod_{p=1}^{n} (1+a_p) \ge 1+\sum_{p=1}^{n} a_p$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\prod_{p=1}^{n} (1 + a_p) \ge 1 + \sum_{p=1}^{n} a_p$ for n = 1, ..., k and any positive real numbers $a_1, ..., a_n$.

Inductive Step: Let a_1, \ldots, a_{k+1} be positive real numbers. By the inductive hypothesis, we know that $\prod_{p=1}^k (1+a_p) \ge 1 + \sum_{p=1}^k a_p$. Then we have

$$\prod_{p=1}^{k+1} (1+a_p) = (1+a_{k+1}) \prod_{p=1}^{k} (1+a_p)$$

$$\geq (1+a_{k+1})(1+\sum_{p=1}^{k} a_p) = 1+a_{k+1}+a_{k+1} \sum_{p=1}^{k} a_p + \sum_{p=1}^{k} a_p$$

$$\geq 1+a_{k+1}+\sum_{p=1}^{k} a_p \text{ because all values } a_p \text{ are positive}$$

$$= 1+\sum_{p=1}^{k+1} a_p$$

So $\prod_{p=1}^{k+1} (1+a_p) \ge 1 + \sum_{p=1}^{k+1} a_p$, which is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim: For all integers $n \ge 2$, $(2n)! > 2^n n!$

Solution:

Proof by induction on n.

Base Case(s): At n = 2, (2n)! = 4! = 24. $2^n n! = 4 \cdot 2 = 8$. So $(2n)! > 2^n n!$

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $(2n)! > 2^n n!$ for all n = 2, 3, ..., k for some integer $k \ge 2$.

Inductive Step: Notice that $2k + 1 \ge 1$ because k is positive. And $(2k)! > 2^k k!$ by the induction hypothesis.

So then

 $(2(k+1))! = (2k+2)(2k+1)(2k)! \ge (2k+2)(2k)! > (2k+2)(2^kk!) = (k+1)2^{k+1}k! = 2^{k+1}(k+1)!$ So $(2(k+1))! > 2^{k+1}(k+1)!$ which is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim: For any sets $A_1, A_2, ..., A_n, |A_1 \cup A_2 \cup ... \cup A_n| \le |A_1| + |A_2| + ... + |A_n|$

Solution:

Proof by induction on n.

Base Case(s): At n = 1 the claim reduces to $|A_1| \leq |A_1|$, which is clearly true.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $|A_1 \cup A_2 \cup ... \cup A_n| \le |A_1| + |A_2| + ... + |A_n|$, for any sets $A_1, A_2, ..., A_n$, where n = 1, 2, ..., k.

Inductive Step: Let $A_1, A_2, \ldots, A_{k+1}$ be sets. Let $S = A_1 \cup A_2 \cup \ldots \cup A_k$.

We know that $|S \cup A_{k+1}| = |S| + |A_{k+1}| - |S \cap A_{k+1}|$ by the Inclusion-Exclusion formula. So $|S \cup A_{k+1}| \le |S| + |A_{k+1}|$ because $|S \cap A_{k+1}|$ cannot be negative.

By the inductive hypothesis $|S| = |A_1 \cup A_2 \cup \ldots \cup A_k| \le |A_1| + |A_2| + \ldots + |A_k|$.

So
$$|A_1 \cup A_2 \cup \ldots \cup A_{k+1}| = |S \cup A_{k+1}| \le |S| + |A_{k+1}| \le (|A_1| + |A_2| + \ldots + |A_k|) + |A_{k+1}|$$
.

So $|A_1 \cup A_2 \cup ... \cup A_{k+1}| \le |A_1| + |A_2| + ... + |A_{k+1}|$, which is what we needed to prove.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim. You may use the fact that $\sqrt{2} \le 1.5$.

Claim: For any positive integer n, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge 2\sqrt{n+1} - 2$.

Solution:

Proof by induction on n.

Base Case(s): At n = 1, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} = 1$. Also $2\sqrt{n+1} - 2 = 2\sqrt{2} - 2 \le 2 \cdot 1.5 - 2 = 1$. So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge 2\sqrt{n+1} - 2$ for n = 1, 2, ..., k.

Inductive Step: First, notice that $(\sqrt{k+1} - \sqrt{k+2})^2 \ge 0$. Multiplying this out gives us $(k+1) - 2\sqrt{k+1}\sqrt{k+2} + (k+2) \ge 0$. So $2k+3 \ge 2\sqrt{k+1}\sqrt{k+2}$.

From the inductive hypothesis, we know that $\sum_{p=1}^{k} \frac{1}{\sqrt{p}} \ge 2\sqrt{k+1} - 2$. So then

$$\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}} = \frac{1}{\sqrt{k+1}} + \sum_{p=1}^{k} \frac{1}{\sqrt{p}} \ge \frac{1}{\sqrt{k+1}} + 2\sqrt{k+1} - 2$$

$$= \frac{1}{\sqrt{k+1}} + \frac{2(k+1)}{\sqrt{k+1}} - 2 = \frac{1+2(k+1)}{\sqrt{k+1}} - 2 = \frac{2k+3}{\sqrt{k+1}} - 2$$

$$\ge \frac{2\sqrt{k+1}\sqrt{k+2}}{\sqrt{k+1}} - 2 = 2\sqrt{k+2} - 2$$

So $\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}} \ge 2\sqrt{k+2} - 2$, which is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Let function $f: \mathbb{Z}^+ \to \mathbb{N}$ be defined by

$$f(1) = 0$$

$$f(n) = 1 + f(\lfloor n/2 \rfloor), \text{ for } n \ge 2,$$

Use (strong) induction on n to prove that $f(n) \leq \log_2 n$ for any positive integer n. You cannot assume that n is a power of 2. However, you can assume that the log function is increasing (if $x \leq y$ then $\log x \leq \log y$) and that $\lfloor x \rfloor \leq x$.

Solution:

Proof by induction on n.

Base Case(s):

$$f(1) = 0$$
 and $\log_2 1 = 0$ So $f(1) \le \log_2 1$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $f(n) \leq \log_2 n$ for n = 1, ..., k - 1.

Inductive Step:

We can assume that $k \geq 2$ (since we did n = 1 for the base case). So $\lfloor k/2 \rfloor$ must be at least 1 and less than k. Therefore, by the inductive hypothesis, $f(\lfloor k/2 \rfloor) \leq \log_2(\lfloor k/2 \rfloor)$.

We know that $f(k) = 1 + f(\lfloor k/2 \rfloor)$, by the definition of f. Substituting the result of the previous paragraph, we get that $f(k) \leq 1 + \log_2(\lfloor k/2 \rfloor)$.

$$\lfloor k/2 \rfloor \le k/2$$
. So $\log_2(\lfloor k/2 \rfloor) \le \log_2(k/2) = (\log_2 k) + (\log_2 1/2) = (\log_2 k) - 1$.

Since $f(k) \le 1 + \log_2(\lfloor k/2 \rfloor)$ and $\log_2(\lfloor k/2 \rfloor) \le (\log_2 k) - 1$, $f(k) \le 1 + (\log_2 k) - 1 = (\log_2 k)$. This is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5} (p+1) = 4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

Claim: For any positive integer n, and any positive reals a_1, \ldots, a_n ,

$$\prod_{p=1}^{n} (1 - a_p) \ge 1 - \sum_{p=1}^{n} a_p$$

Solution:

This problem should have also required that a_1, \ldots, a_n be ≤ 1 . This shouldn't have a major impact on grading because it looks like many folks assumed the critical step would work.

Proof by induction on n.

Base Case(s): At
$$n = 1$$
, $\prod_{p=1}^{n} (1 - a_p) = 1 - a_1$ and $1 - \sum_{p=1}^{n} a_p = 1 - a_1$ so $\prod_{p=1}^{n} (1 - a_p) \ge 1 - \sum_{p=1}^{n} a_p$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\prod_{p=1}^{n} (1 - a_p) \ge 1 - \sum_{p=1}^{n} a_p$ for n = 1, ..., k and any real numbers $a_1, ..., a_n$ between 0 and 1 (inclusive).

Inductive Step: Let a_1, \ldots, a_{k+1} be real numbers between 0 and 1 (inclusive). By the inductive hypothesis, we know that $\prod_{p=1}^k (1-a_p) \ge 1 - \sum_{p=1}^k a_p$. Since $(1-a_{k+1})$ is positive, this means that $(1-a_{k+1}) \prod_{p=1}^k (1-a_p) \ge (1-a_{k+1}) (1-\sum_{p=1}^k a_p)$. Then we have

$$\prod_{p=1}^{k+1} (1 - a_p) = (1 - a_{k+1}) \prod_{p=1}^{k} (1 - a_p)$$

$$\geq (1 - a_{k+1}) (1 - \sum_{p=1}^{k} a_p) = 1 - a_{k+1} + a_{k+1} \sum_{p=1}^{k} a_p - \sum_{p=1}^{k} a_p$$

$$\geq 1 - a_{k+1} - \sum_{p=1}^{k} a_p \text{ because all values } a_p \text{ are positive}$$

$$= 1 - \sum_{p=1}^{k+1} a_p$$

So $\prod_{p=1}^{k+1} (1-a_p) \ge 1 - \sum_{p=1}^{k+1} a_p$, which is what we needed to show.