Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5} (p+1) = 4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

Claim: For any positive integer n and any positive reals a_1, \ldots, a_n ,

$$\prod_{p=1}^{n} (1 + a_p) \ge 1 + \sum_{p=1}^{n} a_p$$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:_____ NetID:____ Lecture: \mathbf{A} \mathbf{B} Discussion: Thursday Friday 9 10 11 **12** 1 2 3 4 5 6 (15 points) Use (strong) induction to prove the following claim: Claim: For all integers $n \ge 2$, $(2n)! > 2^n n!$ Proof by induction on n. Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim: For any sets $A_1, A_2, ..., A_n, |A_1 \cup A_2 \cup ... \cup A_n| \le |A_1| + |A_2| + ... + |A_n|$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: Hint: remember the "Inclusion-Exclusion" formula for computing $|A \cup B|$ in terms of |A|, |B|, $|A \cap B|$.

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim. You may use the fact that $\sqrt{2} \le 1.5$.

Claim: For any positive integer n, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge 2\sqrt{n+1} - 2$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: Hint: notice that $(\sqrt{x+1} - \sqrt{x+2})^2 \ge 0$. What does this imply about $2\sqrt{x+1}\sqrt{x+2}$?

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Let function $f: \mathbb{Z}^+ \to \mathbb{N}$ be defined by

$$f(1) = 0$$

$$f(n) = 1 + f(|n/2|)$$
, for $n \ge 2$,

Use (strong) induction on n to prove that $f(n) \leq \log_2 n$ for any positive integer n. You cannot assume that n is a power of 2. However, you can assume that the log function is increasing (if $x \leq y$ then $\log x \leq \log y$) and that $|x| \leq x$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5} (p+1) = 4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

Claim: For any positive integer n and any positive reals a_1, \ldots, a_n ,

$$\prod_{p=1}^{n} (1 - a_p) \ge 1 - \sum_{p=1}^{n} a_p$$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: