Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 3.

$$T(3) = 7 T(n) = 4T\left(\frac{n}{3}\right) + 5n$$

- (a) The height: $\log_3 n 1$
- (b) Value in each node at level k: Each node at level k contains the value $\frac{5n}{3^k}$.
- (c) Sum of the work in all the leaves (please simplify): The number of leaves is $4^{\log_3 n} = 4^{\log_3 n} = 4^{\log_4 n \log_3 4} = (4^{\log_4 n})^{\log_3 4} = n^{\log_3 4}$ So the work at the leaves is $\frac{7}{4}n^{\log_3 4}$.

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 $(3^n)^2$ 10 $0.001n^3$ $30\log n$ $n\log(n^7)$ 8n! + 18 $3n^2$

Solution:

 $10 \ \ll \ 30 \log n \ \ll \ n \log (n^7) \ \ll \ 3n^2 \ \ll \ 0.001 n^3 \ \ll \ (3^n)^2 \ \ll \ 8n! + 18$

Name:												
NetID:			_	Le	cture	e:	A	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
O(h(x)) and Solution:	Suppose that f , and $g(x) \ll f(x)$. This is true. Sin	Must $f(x)$ + ace $g(x)$ is as	g(x)	be $O(n)$	h(x)?							
	as $f(x)$. We know Check the (single)			aracte	rizes ea	ich ite	m.					
T(1) = d $T(n) = 3T$	(/2)	$(\log n)$ n^2	$\Theta(r)$ $\Theta(r)$	Ē	=	$O(n)$ $O(2^n)$	$\sqrt{}$	$\Theta(n)$	$\log n$	(a) [
T(1) = c $T(n) = 3T$	(/2) +	$(\log n)$ n^2	$\Theta(r)$ $\Theta(r)$	· · ·		$O(n)$ $O(2^n)$		$\Theta(n)$ $\Theta(3^r)$	$\log n$) ,	√ 	
n!	O(:	2^n)	$\Theta(2^n$)	nei	ither o	f thes	e .	\checkmark			
n^{log_24} grows	${ m s}$ at 1	faster t			<u>]</u>	slower	than	n^2				

Name:												
NetID:			_	Le	ectur	e :	A	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
	Suppose that f , f is $\Theta(h(x))$, an											f(x) is
Solution:	This is false.											
Suppose the	at $g(x) = h(x) =$	x^2 and $f(x)$	$=x^2$	+x.	Then f	f(x) - x	g(x) =	= x, w	hich	is no	ot $\Theta(z)$	x^2).
2. (8 points) (Check the (single)	box that be	est ch	.aractei	rizes ea	ach ite	m.					
T(1) = c $T(n) = 2T($	(/0)	$\log n$ n^2	$\Theta(r)$		=	$\Theta(n)$ $\Theta(2^n)$		$\Theta(n)$ $\Theta(3^n)$) .	√ 	
T(1) = d $T(n) = 2T($,	$\log n$ n^2	$\Theta(r)$		i	$\Theta(n)$ $\Theta(2^n)$	✓	$\Theta(n)$ $\Theta(3^n)$	$\log n$	n)		
n^{log_23} grows		faster t				slower	than	n				
Suppose $f($ Will $g(n)$ b	(n) is $\Theta(g(n))$. e $\Theta(f(n))$?	ne	0		perha	ps		yes		′		

Name:												
NetID:			Lecture:			e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
increasing f	You found the functions from the en $\log(f(x))$ is O	e reals to the	ne rea	als, for	which	all o	utput	value	es are	e > 1		_
Solution:												
$f(x) \le cg($ increasing $f(x)$	rue. Suppose that x for all $x \ge k$. function and $\log (2\log(g(x)))$ for a	Then $\log(f \sin t)$, Then	f(x) e is	$\leq \log s$	$c + \log K \ge k$	g(g(x)) such	for a	all x	$\geq k$.	Sinc	e g(x)	e) is an
L .	need this much to on of big-O becau						_			er ine	qualit	y from
2. (8 points) (Check the (single)	box that be	est ch	aracte:	rizes ea	ach ite	m.					
3^n is	$\Theta(2$	\mathbb{C}^n)	O(2	2^n)		neithe	er of t	hese]		
problems, e	problem of size n each of size n/k , ing time when			k < m $k > m$		1	k = r $sm = r$					
T(1) = d $T(n) = T(r)$	(0)	$\log n$ n^2	$\Theta(\sqrt{r})$	Ē		$O(n)$ $O(2^n)$	$\sqrt{}$	$\Theta(n)$ $\Theta(3^n)$	$\log n$)		
T(1) = d $T(n) = T(r)$	- 1	$\log n) \qquad \boxed{ \qquad \qquad }$ $n^2) \qquad \boxed{ \checkmark }$	$\Theta(x)$	\sqrt{n}) n^3)		$\Theta(n)$ $\Theta(2^n)$		$\Theta(n)$ $\Theta(3^n)$	$\log n$	<i>y</i>)		

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2.

$$T(4) = 7 T(n) = 5T\left(\frac{n}{2}\right) + n$$

- (a) The height: $\log_2 n 2$
- (b) The number of leaves (please simplify): $5^{\log_2 n 2} = \frac{1}{25} 5^{\log_2 n} = \frac{1}{25} 5^{\log_5 n \log_2 5} = \frac{1}{25} n^{\log_2 5}$
- (c) Value in each node at level k: $\frac{n}{2^k}$

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$30\log(n^{17})$$
 $\sqrt{n}+n!+18$ $\frac{n\log n}{7}$ $(10^{10^{10}})n$ $0.001n^3$ 2^n $8n^2$

Solution:

$$30\log(n^{17}) \ll (10^{10^{10}})n \ll \frac{n\log n}{7} \ll 8n^2 \ll 0.001n^3 \ll 2^n \ll \sqrt{n} + n! + 18$$

Name:												
NetID:			_	$L\epsilon$	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
Must g be g	Suppose that f $O(f)$? This is true. The	J										(0)
2. (8 points) (Check the (single)	box that be	est ch	naracte:	rizes ea	ach ite	m.	-				

$T(1) = c$ $T(n) = 2T(n/2) + n^2$	$\begin{array}{c cccc} \Theta(\log n) & \hline & \Theta(\sqrt{n}) & \hline & \Theta(n) & \hline & \Theta(n\log n) & \hline \\ \Theta(n^2) & \hline & \Theta(n^3) & \hline & \Theta(2^n) & \hline & \Theta(3^n) & \hline \end{array}$
T(1) = d $T(n) = T(n-1) + c$	$\begin{array}{c cccc} \Theta(\log n) & \square & \Theta(\sqrt{n}) & \square & \Theta(n) & & \Theta(n\log n) & \square \\ \Theta(n^2) & \square & \Theta(n^3) & \square & \Theta(2^n) & \square & \Theta(3^n) & \square \end{array}$
n^{log_42} grows	faster than n^2 slower than n^2 variation at the same rate as n^2
$\log_5 n$ is	$\Theta(\log_3 n)$ $\sqrt{O(\log_3 n)}$ neither of these