NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 3.

$$T(3) = 7 T(n) = 4T\left(\frac{n}{3}\right) + 5n$$

- (a) The height:
- (b) Value in each node at level k:
- (c) Sum of the work in all the leaves (please simplify):

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 $(3^n)^2$ 10 $0.001n^3$ $30\log n$ $n\log(n^7)$ 8n! + 18 $3n^2$

L				

NetID:_____ Lecture: A

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (7 points) Suppose that f, g, and h are functions from the reals to the reals, such that f(x) is O(h(x)) and $g(x) \ll f(x)$). Must f(x) + g(x) be O(h(x))?

2. (8 points) Check the (single) box that best characterizes each item.

$$T(1) = d$$

$$T(n) = 3T(n/3) + c$$

$$\Theta(\log n)$$

 $\Theta(n^2)$

$$\Theta(\sqrt{n})$$

$$\Theta(n^3)$$

$$\Theta(n)$$

$$\Theta(2^n)$$

$$\Theta(n \log n)$$

$$\Theta(3^n)$$

 \mathbf{B}

$$T(1) = c$$

$$T(n) = 3T(n/3) + n$$

$$\Theta(\log n)$$

$$\Theta(n^2)$$

$\Theta(n \log n)$
$\Theta(3^n)$

n!

$$O(2^n)$$

 $\Theta(2^n)$

neither of these

 n^{log_24} grows

faster than n^2 at the same rate as n^2

slower than n^2

NetID:______ Lecture:

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (7 points) Suppose that f, g, and h are functions from the reals to the reals, such that f(x) is $\Theta(h(x))$, g(x) is $\Theta(h(x))$, and f(x) > g(x) for any input x. Must f(x) - g(x) be $\Theta(h(x))$?

2. (8 points) Check the (single) box that best characterizes each item.

$$T(1) = c$$

$$T(n) = 2T(n/2) + n$$

$$\Theta(\log n)$$

 $\Theta(n^2)$

$\Theta(\sqrt{n})$
$\Omega(n^3)$

$$\begin{array}{c|c} & \Theta(n) \\ \hline & \Theta(2^n) \end{array}$$

$$\Theta(n\log n)$$

$$\Theta(3^n)$$

 \mathbf{B}

 \mathbf{A}

$$T(1) = d$$

$$T(n) = 2T(n-1) + c$$

$$\Theta(\log n)$$

 $\Theta(n^2)$

$\Theta(\sqrt{n})$
$\Theta(n^3)$

$\Theta(n \log n)$
$\Theta(3^n)$

 n^{log_23} grows

slower than	n	Ī
		L

Suppose f(n) is $\Theta(g(n))$. Will g(n) be $\Theta(f(n))$?

no

perhaps

yes

NetID:______ Lecture:

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (7 points) You found the following claim on a hallway whiteboard. Suppose that f and g are increasing functions from the reals to the reals, for which all output values are > 1. If f(x) is O(g(x)), then $\log(f(x))$ is $O(\log(g(x)))$. Is this true? Briefly justify your answer.

2. (8 points) Check the (single) box that best characterizes each item.

 3^n is

$\Theta(2$	2^n)
\sim (2	_ ,

 $O(2^n)$

neither of these

k = m

Dividing a problem of size n into m subproblems, each of size n/k, has the best big- Θ running time when

k < m

k > m

km = 1

T(1) = d T(n) = T(n/2) + n

 $\Theta(\log n)$ $\Theta(n^2)$

 $\Theta(n)$ $\Theta(2^n)$

 $\Theta(n\log n)$ $\Theta(3^n)$

 \mathbf{B}

 \mathbf{A}

T(1) = d T(n) = T(n-1) + n

 $\Theta(\log n)$ $\Theta(n^2)$

 $\Theta(\sqrt{n})$ $\Theta(n^3)$

 $\begin{array}{c|c}
\hline
\Theta(n) \\
\Theta(2^n)
\end{array}$

 $\Theta(n\log n)$ $\Theta(3^n)$

 \mathbf{B}

Name:_____

NetID:_____ Lecture: A

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2.

$$T(4) = 7 T(n) = 5T\left(\frac{n}{2}\right) + n$$

- (a) The height:
- (b) The number of leaves (please simplify):
- (c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 $30\log(n^{17})$ $\sqrt{n} + n! + 18$ $\frac{n\log n}{7}$ $(10^{10^{10}})n$ $0.001n^3$ 2^n $8n^2$

ı				

NetID:_____ Lecture: A

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (7 points) Suppose that f and g are functions from the reals to the reals, such that f is $\Theta(g)$. Must g be O(f)?

2. (8 points) Check the (single) box that best characterizes each item.

$$T(1) = c$$

$$T(n) = 2T(n/2) + n^2$$

$$\Theta(\log n)$$

 $\Theta(n^2)$

$$\Theta(\sqrt{n})$$

$$\Theta(n^3)$$

$$\Theta(n)$$

$$\Theta(2^n)$$

$$\Theta(n \log n)$$

$$\Theta(3^n)$$

 \mathbf{B}

$$T(1) = d$$

$$T(n) = T(n-1) + c$$

$$\Theta(\log n)$$

$$\Theta(n^2)$$

$\Theta(\sqrt{n})$
$\Theta(n^3)$

$\Theta(n)$
$\Theta(2^n)$

$\Theta(n \log n)$
$\Theta(3^n)$

 n^{log_42} grows

faster than n^2 at the same rate as n^2

slower than n^2	

 $\log_5 n$ is

 $\Theta(\log_3 n)$

 $O(\log_3 n)$

neither of these