NetID:_

Lecture:

 \mathbf{A}

 \mathbf{B}

Name:			
			_

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

```
01 Spin (a_1, \ldots, a_n): array of integers)

02 if (n = 1)

03 if (a_1 > 8) return true

04 else return false

05 else if (\text{Spin}(a_1, \ldots, a_{n-1})) is true and (\text{Spin}(a_2, \ldots, a_n)) is true)

06 return true

07 else return false
```

1. (3 points) If Spin returns true, what must be true of the values in the input array?

2. (5 points) Give a recursive definition for T(n), the running time of Spin on an input of length n, assuming it takes constant time to set up the recursive calls in line 05.

3. (3 points) What is the height of the recursion tree for T(n)?

4. (4 points) What is the big-theta running time of Spin?

Name:											
NetID:		_	${ m L}\epsilon$	ectur	e:	\mathbf{A}	В				
Discussion: Thursday	Friday	9	10	11	12	1	2	3	4	5	6
01 Weave (a_1, \ldots, a_n) : an arm 02 if $(n = 1)$ return 0 03 else if $(n = 2)$ return n 04 else 05 $p = \lfloor n/3 \rfloor$ 06 $q = \lfloor 2n/3 \rfloor$ 07 rv = max(Weave (a_1, \ldots, a_n) : an arm 02 $q = \lfloor n/3 \rfloor$ 07	$\max(a_1, a_2)$										

Dividing an array takes constant time.

return rv

08

1. (5 points) Let T(n) be the running time of Weave. Give a recursive definition of T(n).

2. (3 points) What is the height of the recursion tree for T(n), assuming n is a power of 3?

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

4. (4 points) How many leaves does this recursion tree have? Simplify so that your answer is easy to compare to standard running times. Recall that $\log_b x = \log_a x \log_b a$.

this tree?

Name:												
NetID:	ID: ussion: Thursday Frid 1 Knit (p_1, \ldots, p_n) : list of n 2D point 2 if $(n = 3)$ 3 return the largest of 4 else 5 $x = \text{Knit}(p_2, p_3, p_4, \ldots, p_n)$ 6 $y = \text{Knit}(p_1, p_3, p_4, \ldots, p_n)$ 7 $z = \text{Knit}(p_1, p_2, \ldots, p_n)$		_	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
02 if 03 04 el 05 06 07 08	(n = 3) return the lasse $\mathbf{x} = \mathrm{Knit}(p_2, \mathbf{y})$ $\mathbf{y} = \mathrm{Knit}(p_1, \mathbf{z})$ $\mathbf{z} = \mathrm{Knit}(p_1, \mathbf{z})$ return $\mathrm{max}(\mathbf{z})$	rgest of $d(p_1, p_3, p_4,, p_n, p_3, p_4,, p_n, p_2,, p_{n-1}, p_2,, p_n)$	$(p_1, p_2),$ $(p_1, p_2),$ $(p_1, p_2),$ $(p_2, p_2),$ $(p_1, p_2),$ $(p_1, p_2),$ $(p_2, p_2),$ $(p_1, p_2),$ $(p_1, p_2),$ $(p_2, p_2),$ $(p_1, p_2),$	$d(p_1, p_2)$	been 1	remove	ed					
Removing the first time.	st/second elemen style	t of a list ta	akes c	constan	t time	; remo	ving	the la	st ele	emen	t tak	es $O(n)$

2. (4 points) What is the amount of work (aka sum of the values in the nodes) at non-leaf level k of

3. (3 points) How many leaves are in the recursion tree for T(n)?

4. (3 points) Is the running time of Knit $O(2^n)$?

recursive definition of T(n).

3. (3 points) What is the height of the recursion tree for T(n)?

4. (4 points) How many leaf nodes are there in the recursion tree for T(n)?

NetID:				$L\epsilon$	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
00 Churn(a_1, \ldots, a_n): list of	n positive i	intege	ers, $n \ge$	≥ 2)							
,	$n=2$) return $ a_1-a_2 $, –	_ /							
02 else	/ '											
03	bestval = 0											
04	for $k = 1$ to n											
05	newval = Chu	$\operatorname{rn}(a_1, a_2, \dots$	a_{k-1}	$a_{k+1},$	$\ldots a_n$	\\ c	onsta	nt tin	ne to	remo	ove a	k
06	if $(newval > b)$	estval) best	val =	newva	l							
07	return bestval											
1. (3 points)	Describe (in Engli	sh) what Ch	nurn (comput	tes.							

2. (5 points) Suppose that T(n) is the running time of Churn on an input list of length n. Give a

6

Name:											
NetID:			<u>-</u>	Le	ecture	e:	\mathbf{A}	В			
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5

01 Grind $(a_1, a_2, \dots a_n)$: list of real numbers) 02 if (n = 1) then return 0 03 else if (n = 2) then return $|a_1 - a_2|$ 04 else 05 $L = Grind(a_2, a_3, \dots, a_n)$ 06 $R = Grind(a_1, a_2, \dots, a_{n-1})$ 07 $Q = |a_1 - a_n|$ 08 return max(L, R, Q)

Removing the first element of a list takes constant time; removing the last element takes O(n) time.

1. (3 points) Give a succinct English description of what Grind computes.

2. (4 points) Suppose T(n) is the running time of Grind. Give a recursive definition of T(n).

3. (4 points) What is the height of the recursion tree for T(n)?

4. (4 points) How many leaves are in the recursion tree for T(n)?

NetID:			Lecture:			\mathbf{A}	В					
Discussion:	Thursday	Friday	9				A 1	ъ 2	3	4	5	6
	-	•		10			_	_	J	_	J	Ū
	i) \\ inputs are		bers									
	f(n=0) return 1											
	lse if $(n = 1)$ returns if $(n = 1)$ returns	irii K										
04 e 05	$ lse if (n is odd) \\ temp = Sew $	(lr floor(n /2)))									
06	return k*tem)									
	lse	ір сешр										
08	temp = Sew((k floor(n/2)))									
09	return temp [*])									
1. (5 points) S that n is a	Suppose $T(n)$ is to power of 2.	he running t	ime o	of Sew.	Give	a recu	rsive o	definit	ion o	of $T($	n), as	suming
2. (4 points) V	What is the heigh	t of the recu	rsion	tree fe	or $T(n)$)?						

3. (3 points) How many leaves are in the recursion tree for T(n)?

4. (3 points) What is the big-Theta running time of Sew?