Name:												
NetID:			Lecture: A			В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(8 points) Many ways can sl	arsha has 25 cup ne make an (orde		_			red, 8	are l	olue,	and	7 are	green	n. How
Solution: In choices for where	to put the blue of	(10)							ps. '	Then	she h	as $\binom{15}{8}$
(5 points) Stare on individual	ate the negation predicates.	of the follow	ring c	laim, r	noving	all ne	gation	ns (e.g	g. "r	not")	so tha	at they
There is a d	lorm room d, such	h that d has	greer	n walls	and d	has no	winc	low.				
Solution: For e	very dorm room	d, d has wall	ls tha	t aren	t green	or d	has a	wind	ow.			
(2 points) Che	eck the (single) be	ox that best	chara	acteriz	es each	item.						
semester, out You must take	want to take 5 of 25 classes being STATS 100. Howes do you have?	ing offered.		$\frac{24!}{20!}$ $\frac{4+3)!}{24!3!}$		24! 20!4! 25! 20!5!]				
	. ,											

CS 173, Fall 17

Examlet 12, Part A

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(9 points) Use proof by contradiction to show that, for any graph G and any two nodes a and b, the shortest walk from a to b does not contain any repeated nodes.

Solution: Suppose not. That is, suppose we have a graph G, two nodes a and b, and the shortest walk W from a to b contains at least one repeated node.

Since W contains a repeated pair of nodes, it must look like $a = w_1, w_2, \ldots, w_{n-1}, w_n = b$. Suppose that $w_i = w_k$, where i < k. We can then make a new walk W' from a to b by removing the nodes between w_i and w_k , merging w_i with w_k . W' is shorter than W, contradicting our assumption that W was the shortest walk between these two nodes.

(6 points) Suppose a set S has 11 elements. How many subsets of S have an even number of elements? Express your answer as a summation. Briefly justify or show work.

Solution: Subsets of S having an even number of elements would have 0, 2, 4, 6, 8 or 10 elements. There are $\binom{11}{0}$ subset of S with no elements, $\binom{11}{2}$ subsets of S with 2 elements, and so on. So the number of subsets of S having an even number of elements is

$$\binom{11}{0} + \binom{11}{2} + \binom{11}{4} + \binom{11}{6} + \binom{11}{8} + \binom{11}{10} = \sum_{i=0}^{5} \binom{11}{2i}.$$

Name:												
NetID:			_	Le	ecture	e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(8 points) Suppose we know (e.g. from the binomial theorem) that $\sum_{k=0}^{n} \binom{n}{k} = 2^n$. Use this to show that $\sum_{k=1}^{n} k \cdot \binom{n}{k} = n \cdot 2^{n-1}$. Show your work.

Solution:

$$k \cdot \binom{n}{k} = k \cdot \frac{n!}{k!(n-k)!} = \frac{n!}{(k-1)!(n-k)!}$$

So
$$\sum_{k=1}^{n} k \cdot \binom{n}{k} = \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} = n \cdot \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} = n \cdot \sum_{k=1}^{n} \binom{n-1}{k-1}$$

Changing the index of the summation and using the given identity gives us

$$n \cdot \sum_{k=1}^{n} \binom{n-1}{k-1} = n \cdot \sum_{k=0}^{n-1} \binom{n-1}{k} = n \cdot 2^{n-1}$$

Combining this with the previous equation, we get $\sum_{k=1}^{n} k \cdot \binom{n}{k} = n \cdot 2^{n-1}$

(5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

 5^{10}

For every tree t, if t grows in Canada, then t is not tall or t is a conifer.

Solution: There is a tree t, such that g is tall and t is not a conifer, bug t grows in Canada.

(2 points) Check the (single) box that best characterizes each item.

How many ways can I choose a set of 5 bagels, if there are 10 types of bagels and all 5 bagels must be different types? $\frac{15!}{5!5!}$ $\sqrt{}$ $\frac{14!}{10!4!}$

CS 173, Fall 17

Examlet 12, Part A

4	

Name:												
NetID:			-	Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(9 points) Researchers recorded phone calls between pairs of two (different) people, never repeating the same pair of people. The calls used n people ($n \ge 2$), but it's possible some people were not in any conversation. Use proof by contradiction to show that two people were in the same number of conversations.

Solution: Suppose not. That is, suppose that each of the n people was in a different number of conversations. For each person, the minimum number of conversations is zero and the maximum is n-1. Since there are exactly n numbers between 0 and n-1, there's some person P who wasn't in any conversation and another person Q who was in n-1 conversations. But this is a contradiction. If Q talked to n-1 people, then Q must have talked to P, contradicting the fact that P didn't talk to anyone.

(6 points) Use the binomial theorem to find a closed form for the summation $\sum_{k=0}^{n} {n \choose k}$. Make sure it's clear how you used the theorem.

Solution: The binomial theorem states that $(x+y)^n = \sum_{k=0}^n x^k y^{n-k} \binom{n}{k}$. Setting x=y=1 gives us $2^n=(1+1)^n=\sum_{k=0}^n (1)^k 1^{n-k} \binom{n}{k}=\sum_{k=0}^n \binom{n}{k}$. That is $\sum_{k=0}^n \binom{n}{k}=2^n$.

CS 173, Fall 17

Examlet 12, Part A

5

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(9 points) Use proof by contradiction to show that, for any integer n, at least one of the three integers n, 2n + 1, 4n + 3 is not divisible by 7.

Solution: Suppose not. That is, suppose that n, 2n + 1, 4n + 3 are all divisible by 7. Then their sum n + (2n + 1) + (4n + 3) must be divisible by 7. So 7n + 4 must be divisible by 7. But then 4 would need to be divisible by 7, which isn't true.

Since its negation led to a contradiction, our original claim must have been true.

(6 points) Suppose a set S has 11 elements. How many subsets of S have five or fewer elements? Express your answer as a summation. Briefly justify or show work.

Solution: There are $\binom{11}{0}$ subset of S with no elements, $\binom{11}{2}$ subsets of S with 2 elements, and so on. So the number of subsets of S having five or fewer elements is

$$\binom{11}{0} + \binom{11}{1} + \binom{11}{2} + \binom{11}{3} + \binom{11}{4} + \binom{11}{5} = \sum_{i=0}^{5} \binom{11}{i}.$$

Name:												
NetID:			Lecture:			\mathbf{A}	В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(8 points) Rebuilding a full bir at level $k + 1$. Ho	-	nlabelled nod	les w	hose lea	aves a	re all a	at leve	els k o	or <i>k</i> -	+1, v	with 1	leaves
Solution: No Let $p = 2n$.	tice that nodes in	n each level o	come	in pair	s, bec	ause tl	ne tre	e is fu	ıll. S	o <i>p</i> m	nust b	e even.
The only thin children (vs. zero options for constr				_								,
(5 points) Staare on individual	ate the negation predicates.	of the follow	ing c	laim, n	noving	all ne	gation	ns (e.	g. "n	iot")	so th	at they
If it is raining	ng, then there is	a cyclist c su	ıch th	nat c is	gettir	ng wet.						
Solution: It is n	caining and for ev	very cyclist c	c, c is	not ge	tting v	wet.						
(2 points) Che	eck the (single) b	ox that best	chara	acterize	es each	item.						
flowers chosen	f ways to select an from 4 possible of each variety).		$\binom{1}{3}$	0) $\boxed{}$]	$\binom{16}{4}$ $\binom{21}{3}$		($\binom{20}{3}$ $\binom{1}{17}$			