Name:													
NetID:			Lecture:			\mathbf{A}	\mathbf{B}						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6	
(7 points) Le and b are two diff	$f: \mathbb{Z}^+ \to \mathbb{P}(\mathbb{Z}^+)$ ferent primes. Ex) be defined typess $f(m)$	by f in terms	$(n) = \{ ms \text{ of } j \}$	$p \in \mathbb{Z}^+$ $f(a)$ an	$f^+:n p $ and $f(b)$	}. Su . Bri	ppose efly ju	that stify	m = your	ab, v	where ver.	a
(8 points) Che	eck the (single) b	ox that best	char	acterize	es each	item.							
$ \{A\subseteq \mathbb{Z}_4 : A \} $	$A $ is even $\} $	1	6		7		8		iı	nfinite	e _		
$\binom{n}{1}$	-1 0	1		2		n]	unde	efined			
There is a se $ \mathbb{P}(A) \leq 2$.	t A such that	true		false									
If $f: \mathbb{R} \to \mathbb{P}(2)$ then $f(17)$ is	•	an integ	Ī			of inta	_			unde	fined		

Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Graph G with set of nodes V is shown below. Recall that deg(n) is the degree of node n. Let's define $f: \mathbb{N} \to \mathbb{P}(V)$ by $f(k) = \{n \in V : \deg(n) = k\}$. Also let $T = \{f(k) \mid k \in \mathbb{N}\}$.

(6 points) Fill in the following values:

$$f(4) =$$

$$f(1) =$$

$$|T| =$$

(7 points) Is T a partition of V? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.

(2 points) Check the (single) box that best characterizes each item.

 $\mathbb{P}(A)\cap\mathbb{P}(B)=\mathbb{P}(A\cap B)$

always

sometimes

never

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Graph G is shown at right with set of nodes V and set of edges E. Let $M:(V,\mathbb{N})\to\mathbb{P}(V)$ be defined by $M(x,n)=\{y\in V\mid \text{ there is a path of length }n\text{ from }x\text{ to }y\}.$ Let $P(x)=\{M(x,n)\mid n\in\mathbb{N}\}.$

(6 points) Give the value of M(c, n), for all values of n from 0 to 3.

(7 points) Is P(c) a partition of V? For each of the three conditions required to be a partition, explain why P(c) does or doesn't satisfy that condition.

(2 points) Check the (single) box that best characterizes each item.

 $\mathbb{P}(A)\cap \mathbb{P}(B)=\emptyset$

always

sometimes

never

Name:												
NetID:			Le		cture:		\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
	et $f: \mathbb{Z}^+ \to \mathbb{P}(\mathbb{Z}^+)$ abset of $f(b)$? Bri				$\{p\in\mathbb{Z}$	$Z^+:n _{I}$	ρ}. Fo	or whi	ich n	atura	l nun	ibers a
(8 points) Che	eck the (single) b	ox that best	charac	terize	es each	item.						
If $f: \mathbb{N} \to \mathbb{P}(0)$ then $f(3)$ is		a ration			a se	t of ra a pov	tional wer se			uno	define	d [
$\{\{a,b\},c\} = \{$	$\{a,b,c\}$	true	e		false	9						
Set B is a part set A . Then	cition of a finite	$ B \le 2^{ A }$ $ B = 2^{ A }$		I	$ B :$ $ B \le A $	$\leq A $ $ A+1 $						

-1 $\boxed{}$ 0 $\boxed{}$ 1 $\boxed{}$ 2 $\boxed{}$ n $\boxed{}$ undefined $\boxed{}$

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Graph G is shown at right with set of nodes V and set of edges E. Let $M:(V,\mathbb{N})\to \mathbb{P}(V)$ be defined by $M(x,n)=\{y\in V\mid \text{ there is a path of length }n\text{ from }x\text{ to }y\}.$ Let $P(x)=\{M(x,n)\mid n\in \mathbb{N}\}.$

(6 points) Give the value of M(g, n), for all values of n from 0 to 3.

(7 points) Is P(g) a partition of V? For each of the three conditions required to be a partition, explain why P(g) does or doesn't satisfy that condition.

(2 points) Check the (single) box that best characterizes each item.

 $\binom{n}{n}$ -1 0 1 2 n undefined

CS 173, Fall 17 Examlet 12, Part B Name:_____ NetID: Lecture: \mathbf{A} \mathbf{B} Friday **12** 3 Discussion: Thursday 9 **10** 11 1 $\mathbf{2}$ 6 4 5 Graph G is shown below with set of nodes V and set of edges E. (a) (d)Let $F: V \to \mathbb{P}(V)$ such that $F(n) = \{v \in V \mid \text{ there is a cycle containing } n \text{ and } v\}.$ Let $T = \{F(n) \mid n \in V\}.$ (6 points) Fill in the following values: F(g) =F(b) =F(k) =

(7 points) Is T a partition of V? For each of the three conditions required to be a partition, explain why T does or doesn't satisfy that condition.

(2 points) Check the (single) box that best characterizes each item.

undefined