Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

(15 points) Notice that, for any integer p, $\lfloor p \rfloor = \lfloor p + \frac{1}{2} \rfloor = p$. Using this fact and your best mathematical style, prove the following claim:

For any integer n, if n is odd, then $\left\lfloor \frac{n}{2} \right\rfloor^2 + \left\lfloor \frac{n}{2} \right\rfloor \geq \frac{1}{2} \left\lfloor \frac{n^2}{2} \right\rfloor$

Name:											
NetID:				Lec	ture:		\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

(15 points) Prove the following claim, using your best mathematical style and the following definition of congruence mod k: $a \equiv b \pmod{k}$ if and only if a = b + nk for some integer n.

Claim: for all integers a, b, c, d, j, and k (j and k positive), if $a \equiv b \pmod{j}$, $c \equiv d \pmod{k}$, and $j \mid k$, then $a + c \equiv b + d \pmod{j}$.

Name:											
NetID:				Lec	ture:		\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

(15 points) Recall that a real number p is rational if there are integers m and n (n non-zero) such that $p = \frac{m}{n}$. Use this definition and your best mathematical style to prove the following claim:

For all rational numbers x, y and z, if y is non-zero, then $5(\frac{x}{y}) - 2z$ is rational.

Name:											
NetID:				Lec	cture:		\mathbf{A}	В			
Discussion	Thursday	Friday	10	11	12	1	2	3	4	5	6

(15 points) Recall that a real number p is rational if there are integers m and n (n non-zero) such that $p = \frac{m}{n}$. Use this definition and your best mathematical style to prove the following claim by contrapositive.

For all real numbers x and y, if x is not rational, then 2x + 3y is not rational or y is not rational.

You must begin by explicitly stating the contrapositive of the claim:

Name:											
NetID:				Lec	cture:		\mathbf{A}	В			
Discussion	Thursday	Friday	10	11	12	1	2	3	1	5	e

(15 points) Prove the following claim, using your best mathematical style. Hint: look at remainders and use proof by cases.

For any integer n, $n^2 + 2$ is not divisible by 4.

Name:											
NetID:				Lec	cture:		\mathbf{A}	В			
Discussion	Thursday	Friday	10	11	12	1	2	3	1	5	6

(15 points) A triple (a, b, c) of positive integers is Pythagorean if $a^2 + b^2 = c^2$. Use proof by contrapositive to prove the following claim, using your best mathematical style and working directly from the definitions of "odd" and "even." (You may assume that odd and even are opposites.)

For any Pythagorean triple (a, b, c), if c is odd, then a is even or b is even.

You must begin by explicitly stating the contrapositive of the claim: