Name:				
NetID:	Lecture:	${f A}$	В	

Discussion: Thursday **Friday** 1 **10 12** $\mathbf{2}$ $\mathbf{3}$ 6 11 4 5

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

For any real numbers x and y, if x or y is irrational, then xy is irrational.

Solution: This is not true. Consider $x = y = \sqrt{2}$. Then x or y is irrational (because they are both irrational). But xy = 2 which is rational.

2. (6 points) Use the Euclidean algorithm to compute gcd(1012, 299). Show your work.

Solution:
$$1012 - 3 \times 299 = 1012 - 897 = 115$$

$$299 - 2 \times 115 = 299 - 230 = 69$$

$$115 - 69 = 46$$

$$69 - 46 = 23$$

$$46 - 2 \times 23 = 0$$

So
$$gcd(1012, 299) = 23$$

3. (4 points) Check the (single) box that best characterizes each item.

$$7 \mid -7$$
 true $\sqrt{}$ false

$$k \equiv -k \pmod{k}$$
 always $\sqrt{}$ sometimes $\boxed{}$ never $\boxed{}$

Name:											
NetID:			-	Lec	ture:		\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-example showing that it is not.

Claim: For all positive integers a, b, and c, if gcd(a,b) = 1 and gcd(b,c) = 1, then gcd(a,c) = 1.

Solution: This is false. Consider a = c = 3 and b = 2. Then a and b have no common factors, i.e. gcd(a, b) = 1. Also b and c have no common factors, i.e. gcd(b, c) = 1. But gcd(a, c) = 3.

2. (6 points) Use the Euclidean algorithm to compute gcd(3927, 637). Show your work.

Solution:

$$3927 - 6 \times 637 = 3927 - 3822 = 105$$

 $637 - 6 \times 105 = 7$

 $105 - 15 \times 7 = 0$

So the GCD is 7.

3. (4 points) Check the (single) box that best characterizes each item.

$\gcd(k,0)$ for k	0	k /	undefined
non-zero	0	K V	

$$7 \equiv 5 \pmod{1}$$
 true $\sqrt{}$ false $\boxed{}$

Name:											
NetID:			-	Lec	ture:		A	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
(- /	Let a and b be in of a divided by	0 ,							-	uotie	$\operatorname{nt} q$ and
Solution:	$0 \le r < b$										
2. (6 points) V	Use the Euclidean	n algorithm	to com	ipute g	cd(4263)	3, 667	7). Sh	ow yo	our v	vork.	
Solution:				-	`		,				
$4263 - 6 \times 6$	667 = 261										
$667 - 2 \times 26$	61 = 145										
261 - 145 =	116										
145 - 116 =	= 29										
$116 - 4 \times 29$	9 = 0										
So the GCD) is 29.										
3. (4 points) C	Theck the (single)	box that be	est cha	racteri	zes each	ı itei	n.				
· - /	, ,										
_	e numbers p , the numbers q such		ly	true	$\sqrt{}$	fa	lse [
Zero is a fac	etor of 7.	true		fals		Ī					

В

Name:		

NetID:_____ Lecture: A

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-example showing that it is not.

For any positive integers a, b, q and r, if a = bq + r, then gcd(a, b) = gcd(a, r).

Solution: This is false. Consider a=18, b=5, q=3, and r=3. Then we have $18=5\cdot 3+3.$ gcd(a,b)=1, but gcd(a,r)=3.

2. (6 points) Use the Euclidean algorithm to compute gcd(1568, 546). Show your work.

Solution:

$$1568 - 546 \times 2 = 1568 - 1092 = 476$$

$$546 - 476 = 70$$

$$476 - 70 \times 6 = 476 - 420 = 56$$

$$70 - 56 = 14$$

$$56 - 14 \times 3 = 0$$

So the GCD is 14.

3. (4 points) Check the (single) box that best characterizes each item.

If a and b are positive and r = remainder(a, b), then gcd(b, r) = gcd(b, a) false

 $-7 \equiv 13 \pmod{6}$ true false $\sqrt{}$

Name:											
NetID:			-	Lec	ture:		\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

1. (5 points) Is the following claim true? Informally explain why it is false, or give a concrete example showing that it is not.

There is an integer n such that $n \equiv 5 \pmod{6}$ and $n \equiv 2 \pmod{10}$?

Solution: There is no such n. If $n \equiv 5 \pmod{6}$ and $n \equiv 2 \pmod{10}$, then n = 5 + 6k and n = 2 + 10j, where k and j are integers. So 5 + 6k = 2 + 10j. This implies that 3 = 10j - 6k which is impossible because the right side is divisible by 2 and the left side isn't.

2. (6 points) Use the Euclidean algorithm to compute gcd(7917, 357). Show your work.

Solution:

$$7917 - 22 \times 357 = 63$$

$$357 - 5 \times 63 = 42$$

$$63 - 42 = 21$$

$$42 - 2 \times 21 = 0$$

So the GCD is 21.

3. (4 points) Check the (single) box that best characterizes each item.

$\gcd(0,$	0)
0 (-)	- /

undefined

$$29 \equiv 2 \pmod{9}$$

true

false

$\mathbf{Name:}$		

NetID:_____

Lecture: A B

1

Discussion: T

Thursday Friday

10

 ${\bf 12}$

2 3

5 6

4

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-example showing that it is not.

11

For any positive integer k, $(k-1)^2 \equiv 1 \pmod{k}$.

Solution: This is true. Notice that (k-1)-(-1)=k. So $k-1\equiv (-1)\pmod k$. Therefore $(k-1)^2\equiv (-1)^2\equiv 1\pmod k$.

2. (6 points) Use the Euclidean algorithm to compute gcd(1183, 351). Show your work.

Solution:

$$1183 - 3 \times 351 = 1183 - 1053 = 130$$

$$351 - 2 \times 130 = 351 - 260 = 91$$

$$130 - 91 = 39$$

$$91 - 3 \times 39 = 91 - 78 = 13$$

$$39 - 3 \times 13 = 0$$

So the GCD is 13.

3. (4 points) Check the (single) box that best characterizes each item.

 $k \equiv -k \pmod{7}$

always

sometimes

 $\sqrt{}$

never

 $-2 \equiv 2 \pmod{4}$

 ${\rm true}$

 $\sqrt{}$

 ${\rm false}$