Name:											
NetID:			_	Lecture:			\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
. – ,	Is the following owing that it is n		Inform	nally e	xplain	why	it is,	or gi	ve a	conci	rete count
For an	y real numbers x	and y , if x	or y is	irratio	nal, the	en x_i	y is ir:	ration	ıal.		
2. (6 points)	Use the Euclidea	n algorithm	to com	pute g	cd(101)	2, 29	9). Sł	now y	our v	work.	
3. (4 points) (Check the (single)) box that b	est cha	racteri	zes eacl	h ite	m.				
7 -7		true		false							
la — la (ad b								_		
$k \equiv -k \pmod{m}$	alv	ways	som	netimes	3		never				

Name:_____

NetID:______ Lecture:

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-example showing that it is not.

 \mathbf{A}

 \mathbf{B}

Claim: For all positive integers a, b, and c, if gcd(a,b)=1 and gcd(b,c)=1, then gcd(a,c)=1.

2. (6 points) Use the Euclidean algorithm to compute gcd(3927, 637). Show your work.

3. (4 points) Check the (single) box that best characterizes each item.

gcd(k,0) for k non-zero

0

k

undefined

 $7 \equiv 5 \pmod{1}$

true

Name:											
NetID:			_	Lecture:		A	В				
Discussion:	Thursday	Friday	10	11	12 1		2	3	4	5	6
	Let a and b be in a of a divided by									uotie	$\operatorname{mt} q$ and the
2. (6 points)	Use the Euclidea:	n algorithm	to com	pute g	cd(4263	3, 66	7). Sł	now yo	our v	vork.	
For all prin	Check the (single) ne numbers p , the numbers q such	ere are exact	ly	racteriz true [zes each		m. lse [
Zero is a fa	ctor of 7.	true		fals	е 🔲						

Name:_____

NetID:______ Lecture:

A B

Discussion:

Thursday Friday

10

11 12

1 2

4

3

5 6

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-example showing that it is not.

For any positive integers a, b, q and r, if a = bq + r, then gcd(a, b) = gcd(a, r).

2. (6 points) Use the Euclidean algorithm to compute gcd(1568, 546). Show your work.

3. (4 points) Check the (single) box that best characterizes each item.

If a and b are positive and r = remainder(a, b), then gcd(b, r) = gcd(b, a)

true

false

 $-7 \equiv 13 \pmod{6}$

true

Name:											
NetID:				Lecture: A				В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

1. (5 points) Is the following claim true? Informally explain why it is false, or give a concrete example showing that it is not.

There is an integer n such that $n \equiv 5 \pmod{6}$ and $n \equiv 2 \pmod{10}$?

2. (6 points) Use the Euclidean algorithm to compute gcd(7917, 357). Show your work.

3. (4 points) Check the (single) box that best characterizes each item.

 $\gcd(0,0) \qquad \qquad 0$

undefined

 $29 \equiv 2 \pmod{9}$ true

Name:_____

NetID:______ Lecture:

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-example showing that it is not.

 \mathbf{A}

 \mathbf{B}

For any positive integer k, $(k-1)^2 \equiv 1 \pmod{k}$.

2. (6 points) Use the Euclidean algorithm to compute $\gcd(1183, 351)$. Show your work.

3. (4 points) Check the (single) box that best characterizes each item.

 $k \equiv -k \pmod{7}$

always

sometimes

never

 $-2 \equiv 2 \pmod{4}$

true