NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

 $A = \{(x, y) \in \mathbb{R}^2 : y = x^2 - 4\}$

 $B = \{ (p, q) \in \mathbb{Z}^2 : q < 0 \}$

 $C = \{(a, b) \in \mathbb{R}^2 : |a| \le 1\}$

Prove that $A \cap B \subseteq C$.

Solution: Proof: Let $(x, y) \in A \cap B$. Then, $(x, y) \in A$ and $(x, y) \in B$. So, from the definition of A, we know that $y = x^2 - 4$. From the definition of B, we know that y < 0 and that x and y are both integers.

 $y = x^2 - 4 = (x - 2)(x + 2)$. So since y < 0, -2 < x < 2. But x is an integer. So the only possible values in this range are -1, 0, and 1. Therefore $|x| \le 1$. So $(x, y) \in C$, which is what we needed to prove.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

$$A = \{(x,y) \in \mathbb{Z}^2 \ | \ 2xy + 6y - 5x - 15 \ge 0\}$$

$$B = \{(a, b) \in \mathbb{Z}^2 \mid a \ge 0\}$$

$$C = \{(p,q) \in \mathbb{Z}^2 \mid q \ge 0\}$$

Prove that $(A \cap B) \subseteq C$.

Solution: Suppose that (x, y) is an element of $(A \cap B)$. This means that (x, y) is an element of A and (x, y) is an element of B. So $2xy + 6y - 5x - 15 \ge 0$ and $x \ge 0$, by the definitions of A and B.

Notice that 2xy + 6y - 5x - 15 = (x+3)(2y-5). So $(x+3)(2y-5) \ge 0$. We know that x+3 is positive because $x \ge 0$. So we must have $(2y-5) \ge 0$.

Now, if $(2y-5) \ge 0$, then $2y \ge 5$. So $y \ge \frac{5}{2}$. So $y \ge 0$. This means that (x,y) is an element of C which is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

$$A = \{\alpha(2, -4) + (1 - \alpha)(-2, 5)) \mid \alpha \in \mathbb{R}\}\$$

$$B = \{(a, b) \in \mathbb{R}^2 \mid b \le -1\}$$

$$C = \{(p,q) \in \mathbb{R}^2 \mid p \ge 0\}$$

Prove that $A \cap B \subseteq C$.

Solution: Let (x,y) be a 2D point and suppose that $(x,y) \in A \cap B$. Then $(x,y) \in A$ and $(x,y) \in B$.

Since $(x, y) \in A$, $(x, y) = \alpha(2, -4) + (1 - \alpha)(-2, 5)$ where α is a real number. So $x = 2\alpha - 2(1 - \alpha) = 4\alpha - 2$ And $y = -4\alpha + 5(1 - \alpha) = 5 - 9\alpha$

Since $(x,y) \in B$, $y \le -1$. So we have $y = 5 - 9\alpha \le -1$. So $6 \le 9\alpha$. So $\alpha \ge \frac{2}{3}$.

So then
$$x = 4\alpha - 2 \ge 4\frac{2}{3} - 2 = \frac{8}{3} - 2 = \frac{2}{3}$$
.

So $x \ge 0$ and therefore $(x,y) \in C$, which is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

 $A = \{a(1,0) + b(3,1) + c(2,4) : a, b, c \text{ are positive reals and } a + b + c = 1\}$

$$B = \{(x, y) \in \mathbb{R}^2 : x \le 3 \text{ and } y \ge 0\}$$

Prove that $A \subseteq B$.

Solution: Let $(x,y) \in A$. By the definition of A, (x,y) = a(1,0) + b(3,1) + c(2,4), where a, b, and c are positive reals and a + b + c = 1.

Then (x, y) = (a + 3b + 2c, b + 4c). So x = a + 3b + 2c and y = b + 4c.

We know that a, b, and c are positive, so b + 4c must be positive. So $y \ge 0$.

Since a and c are positive and a + b + c = 1, we have

$$x = a + 3b + 2c \le 3a + 3b + 3c = 3(a + b + c) = 3$$

So $y \ge 0$ and $x \le 3$. Therefore (x, y) is in B, by the definition of the set B.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

$$A=\{(x,y)\in\mathbb{R}^2\ :\ xy\leq -7\}$$

$$B = \{(p^3, p^2) : p \in \mathbb{R}\}$$

$$C = \{(a, b) \in \mathbb{R}^2 : a < 0\}$$

Prove that $A \cap B \subseteq C$.

Solution: Proof: Let $(x,y) \in A \cap B$. Then, $(x,y) \in A$ and $(x,y) \in B$. So, from the definition of A, we know that $xy \leq -7$. From the definition of B, we know that $x = p^3$ and $y = p^2$, for some real number p.

Since $xy \le 7 < 0$, we know x and y have opposite signs and neither is zero. Since $y = p^2$, we know that y is positive. So x must be negative.

Since x is negative, $(x, y) \in C$, which is what we needed to prove.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

 $A = \{(x, y) \in \mathbb{R}^2 : y = x^2 - 4\}$

 $B = \{ (p, q) \in \mathbb{Z}^2 : q < 0 \}$

 $C = \{(a, b) \in \mathbb{R}^2 : |a| \le 1\}$

Prove that $A \cap B \subseteq C$.

Solution: Proof: Let $(x, y) \in A \cap B$. Then, $(x, y) \in A$ and $(x, y) \in B$. So, from the definition of A, we know that $y = x^2 - 4$. From the definition of B, we know that y < 0 and that x and y are both integers.

 $y = x^2 - 4 = (x - 2)(x + 2)$. So since y < 0, -2 < x < 2. But x is an integer. So the only possible values in this range are -1, 0, and 1. Therefore $|x| \le 1$. So $(x, y) \in C$, which is what we needed to prove.