Name:

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (4 points) $A = \{\text{water, beer, wine}\}$ $B = \{\text{cup, mug}\}$ $C = \{\text{wine, (water, beer)}\}$ $(A - C) \times B =$

 $\textbf{Solution:} \hspace{0.2cm} \{\hspace{0.1cm} (\text{water}, \text{cup}), (\text{beer}, \text{cup}), (\text{water}, \text{mug}), (\text{beer}, \text{mug}), \hspace{0.1cm} \}$

 $A \cap B =$

Solution: \emptyset

2. (4 points) Check the (single) box that best characterizes each item.

 $\forall x \in \mathbb{N}$, if x < -10, then $x = \pi$. (π is the familiar constant.)

true 🗸

false undefined

 $|A \times B| = |A| \times |B|$

true for all sets A false for all sets A

 $\sqrt{}$

true for some sets A

3. (7 points) In \mathbb{Z}_7 , find the value of $[3]^{37}$. You must show your work, keeping all numbers in your calculations small. **You may not use a calculator.** You must express your final answer as [n], where $0 \le n \le 6$.

Solution: $[3]^2 = [9] = [2]$

$$[3]^4 = [2]^2 = [4]$$

$$[3]^8 = [4]^2 = [16] = [2]$$

$$[3]^{16} = [2]^2 = [4]$$

$$[3]^{32} = [4]^2 = [2]$$

$$[3]^{37} = [3]^{32} \cdot [3]^4 \cdot [3] = [2][4][3] = [24] = [3]$$

Name:											
NetID:			_	Lec	ture:		\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, $(A - B) \cup (B - C) = (A \cup B) - (A \cap B \cap C)$

Solution: This is not true. Suppose that A is the empty set, and $B = C = \{1\}$. Then 1 is in $(A \cup B)$ but not in $(A \cap B \cap C)$, So 1 is in $(A \cup B) - (A \cap B \cap C)$. However, 1 is neither in A - B nor in B - C. So it's not in $(A - B) \cup (B - C)$

2. (4 points) Check the (single) box that best characterizes each item.

$\emptyset \subseteq A$	true for all sets A false for all sets A		true for some sets A
For any sets A and B , if $x \in A - B$, then $x \in A$	A. tru	e 🗸	false

3. (7 points) In \mathbb{Z}_9 , find the value of $[5]^{21}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 8$.

Solution: $[5]^2 = [25] = [7]$ $[5]^4 = [7]^2 = [49] = [4]$ $[5]^8 = [4]^2 = [16] = [7]$ $[5]^{16} = [7]^2 = [49] = [4]$ $[5]^{21} = [5]^{16} \cdot [5]^4 \cdot [5] = [4][4][5] = [80] = [8]$

Name:				
NetID:	Lecture:	${f A}$	В	

Discussion: Thursday 1 **12** 2 3 Friday 10 4 6 11 5

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, (A - B) - C = A - C

Solution: This is not true. Suppose that C is the empty set, and $A = B = \{1\}$. Then 1 is not (A-B), therefore not in (A-B)-C. However, 1 is in A-C, because it's in A but not in C. So the two sets aren't equal.

2. (4 points) Check the (single) box that best characterizes each item.

$A \times B = B \times A$	true for all sets A and B	false for all sets A and B	
$A \times D = D \times A$	true for some sets A and B		

$$\{\emptyset\} \times \{\emptyset\} = \emptyset \qquad \qquad \{\emptyset\} \qquad \qquad \{\emptyset,\emptyset\} \qquad \qquad \{(\emptyset,\emptyset)\} \qquad \boxed{\checkmark}$$

3. (7 points) In \mathbb{Z}_{11} , find the value of $[6]^{42}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

$$[6]^2 = [36] = [3]$$

$$[6]^4 = [3]^2 = [9]$$

$$[6]^8 = [9]^2 = [81] = [4]$$

$$[6]^{16} = [4]^2 = [16] = [5]$$

$$[6]^{32} = [5]^2 = [25] = [3]$$

$$[6]^{42} = [6]^{32} \cdot [6]^8 \cdot [6]^2 = [3][4][3] = [36] = [3]$$

 \mathbf{B}

true for some sets A and B

Name:_

NetID: Lecture: A

Thursday 2 Discussion: Friday **10** 11 **12** 1 3 6 4 5

1. (4 points) $A = \{ \text{water, beer, wine} \}$ $B = \{ \text{cup, mug} \}$ $C = \{ \text{wine, (water, beer)} \}$ $A \times (B \cap C) =$

Solution: $A \times \emptyset = \emptyset$

 $|A \times B \times C| =$

Solution: $3 \times 2 \times 2 = 12$

2. (4 points) Check the (single) box that best characterizes each item.

If $x \in A \cap B$, then $x \in A$. false for all sets A and B

 $\{13, 14, 15\} \times \emptyset =$ {13, 14, 15} $\{\emptyset\}$

true for all sets A and B

3. (7 points) In \mathbb{Z}_{11} , find the value of $[7]^{12} + [9]^5$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

$$[7]^{2} = [49] = [5]$$

$$[7]^{4} = [5^{2}] = [25] = [3]$$

$$[7]^{8} = [3^{2}] = [9]$$
So $[7]^{12} = [7]^{8} \cdot [7]^{4} = [3] \cdot [9] = [27] = [5]$

$$[9]^{2} = [81] = [4]$$

$$[9]^{4} = [4]^{2} = [16] = 5$$
So $[9]^{5} = [9] \cdot [5] = [45] = [1]$
So $[7]^{12} + [9]^{5} = [5] + [1] = [6]$.

Name:											
NetID:			<u>-</u>	Lec	ture:		\mathbf{A}	\mathbf{B}			
Discussion	Thursday	Friday	10	11	19	1	2	3	1	5	6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C,
$$A \times (B - C) = (A \times B) - (A \times C)$$

Solution: This is true. Elements in $A \times (B - C)$ need to have a first component from A and a second component that's in B but not in C. But these are the same conditions required for a element to be in $A \times B$ but not in $A \times C$.

2. (4 points) Check the (single) box that best characterizes each item.

$\overline{A \cup B} = \overline{A} \cap \overline{B}$	true for all sets A false for all sets A		true for s	ome sets A]
$\forall x \in \mathbb{R}$, if $\pi = 3$, then x (π is the familiar constant)		e 🗸	false	undefined	

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{18} + [7]^4$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 12$.

$$[7]^{2} = [49] = [10] = [-3]$$

$$[7]^{4} = [-3]^{2} = [9]$$

$$[7]^{6} = ([7]^{2})^{3} = [-3]^{3} = [-27] = [-1]$$

$$[7]^{18} = ([7]^{6})^{3} = [-1]^{3} = [-1] = [12]$$
So $[7]^{18} + [7]^{4} = [12] + [9] = [21] = [8]$

Name:											
NetID:			_	Lec	ture	:	\mathbf{A}	В			
Discussion: Thursd	day	Friday	10	11	12	1	2	3	4	5	6
1. (4 points) $A = \{\text{ginger} \ A \cap B = $ Solution: $\{\text{ginger}\}$ $A \cap C = $ Solution: \emptyset	, clove,	$\operatorname{nutmeg} \}$	B	= {ging	er, van	illa, p	epper	·}	<i>C</i> =	= { (c	${ m love, nutmeg)} \; \}$
2. (4 points) Check the (single)	box that b	est ch	aracteriz	zes eac	h iter	n.				
$ A \cup B \le A + B $		for all sets		$\sqrt{}$	tru	e for s	some	sets A	A [
$\emptyset imes \emptyset =$	$\{\emptyset,\emptyset$)}	{(Ø}		Ø			unde	fined	

where $0 \le n \le 10$.

$$[7]^2 = [49] = [5]$$

$$[7]^4 = ([7]^2)^2 = [5]^2 = [25] = [3]$$

$$[7]^8 = ([7]^4)^2 = [3]^2 = [9] = [-2]$$

$$[7]^16 = ([7]^8)^2 = [-2]^2 = [4]$$

$$[7]^32 = ([7]^{16})^2 = [4]^2 = [16] = [5]$$

$$[7]^{38} = [7]^{32} \cdot [7]^4 \cdot [7]^2 = [5] \cdot [3] \cdot [5] = [15] \cdot [5] = [4] \cdot [5] = [20] = [9]$$