Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (4 points) $A = \{\text{water, beer, wine}\}$ $B = \{\text{cup, mug}\}$ $C = \{\text{wine, (water, beer)}\}$ $(A - C) \times B =$

 $A \cap B =$

2. (4 points) Check the (single) box that best characterizes each item.

false for all sets A

 $\forall x \in \mathbb{N}$, if x < -10, then $x = \pi$.

(π is the familiar constant.) true false undefined $|A \times B| = |A| \times |B|$ true for all sets A true for some sets A

3. (7 points) In \mathbb{Z}_7 , find the value of $[3]^{37}$. You must show your work, keeping all numbers in your calculations small. **You may not use a calculator.** You must express your final answer as [n], where $0 \le n \le 6$.

true.

Name:											
NetID:			-	Lec	ture:		\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
1. (4 points)	Is this claim true	? Give a cor	ncrete o	counter	-examj	ole o	r brie	fly ex	plain	why	it's

For any sets A, B, and C, $(A - B) \cup (B - C) = (A \cup B) - (A \cap B \cap C)$

2. (4 points) Check the (single) box that best characterizes each item.

$\emptyset \subseteq A$	true for all sets A false for all sets A	true for some sets A
For any sets A and B , if $x \in A - B$, then $x \in A$	4. true	false

3. (7 points) In \mathbb{Z}_9 , find the value of $[5]^{21}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 8$.

Name:____

NetID:______ Lecture:

A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, (A - B) - C = A - C

2. (4 points) Check the (single) box that best characterizes each item.

 $A \times B = B \times A$

true for all sets A and B true for some sets A and B

false for all sets A and B

 $\{\emptyset\} \times \{\emptyset\} =$

Ø

{Ø}

 $\{\emptyset,\emptyset\}$

 $\{(\emptyset,\emptyset)\}$

3. (7 points) In \mathbb{Z}_{11} , find the value of $[6]^{42}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

Name:_

NetID:

Lecture: \mathbf{A} \mathbf{B}

Friday 12 1 $\mathbf{2}$ 3 Discussion: Thursday **10** 11 4 6 5

1. (4 points) $A = \{\text{water, beer, wine}\}$ $A \times (B \cap C) =$

 $B = \{ \text{cup, mug} \}$ $C = \{ \text{wine, (water, beer)} \}$

 $|A \times B \times C| =$

2. (4 points) Check the (single) box that best characterizes each item.

If $x \in A \cap B$, then $x \in A$.

true for all sets A and B false for all sets A and B

true for some sets A and B

 $\{13, 14, 15\} \times \emptyset =$

 $\{\emptyset\}$

 $\{13, 14, 15\}$

3. (7 points) In \mathbb{Z}_{11} , find the value of $[7]^{12} + [9]^5$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

Name:											
NetID:			<u>-</u>	Lec	cture:		\mathbf{A}	В			
Discussion	Thursday	Friday	10	11	19	1	2	2	1	5	6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, $A \times (B - C) = (A \times B) - (A \times C)$

2. (4 points) Check the (single) box that best characterizes each item.

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \qquad \text{true for all sets A} \qquad \text{true for some sets A} \qquad \\ \forall x \in \mathbb{R}, \text{ if } \pi = 3, \text{ then } x < 20. \\ (\pi \text{ is the familiar constant.}) \qquad \text{true} \qquad \text{false} \qquad \text{undefined} \qquad \\ \boxed{}$$

3. (7 points) In \mathbb{Z}_{13} , find the value of $[7]^{18} + [7]^4$. You must show your work, keeping all numbers in your calculations small. **You may not use a calculator.** You must express your final answer as [n], where $0 \le n \le 12$.

 $\emptyset \times \emptyset =$

NetID:		-	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
1. (4 points) $A \cap B =$	$A = \{\text{ginger}, \text{clove}\}$	e, $nutmeg$	B =	= {ging	er, vani	lla, p	epper	}	C =	= { (c)	${ m love, nutmeg)}\ \}$
$A \cap C =$											
2. (4 points) (Check the (single)) box that be	est cha	racteriz	zes eacl	h iter	n.				
$ A \cup B \le $	A + B	e for all sets se for all sets			true	for s	some s	sets A	1		

3. (7 points) In \mathbb{Z}_{11} , find the value of $[7]^{38}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

 $\{\emptyset\}$

undefined

 $\{\emptyset,\emptyset\}$