Name:											
NetID:				Lec	ture:		\mathbf{A}	\mathbf{B}			
Discussion	Thursday	Friday	10	11	12	1	2	3	1	5	6

Suppose that T is a relation on the integers which is transitive. Let's define a relation R on pairs of integers such that (p,q)R(a,b) if and only if (a+b)T(p+q). Prove that R is transitive.

NetID:_ Lecture: \mathbf{B} \mathbf{A}

Discussion: Thursday Friday 10 11 **12** 1 2 3 4 **5** 6

Let T be the relation defined on \mathbb{Z}^2 by

(x,y)T(p,q) if and only if x < p or $(x = p \text{ and } y \le q)$

Prove that T is antisymmetric.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

Let $A = \{(a, b) \in \mathbb{R}^2 : a > 0, b > 0, \text{ and } a + b = 90\}$. That is, an element of A is a pair of positive reals that sum to 90 (e.g. the non-right angles in a right triangle). Now, let's define a relation \sim on A as follows:

 $(a,b) \sim (p,q)$ if and only if a=p or a=q.

Prove that R is transitive.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

For any two real numbers with $a \leq b$, the closed interval [a,b] is defined by $[a,b] = \{x \in \mathbb{R} : a \leq x \leq b\}$. Let J be the set containing all closed intervals [a,b]. Let's define the relation F on J as follows:

[s,t]F[p,q] if and only if $q \leq s$

Prove that F is antisymmetric.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

(x,y)T(p,q) if and only if $x \leq p$ and $xy \leq pq$

Prove that T is antisymmetric.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

A closed interval of the real line can be represented as a pair (c, r), where c is the center of the interval and r is its radius. Let $X = \{(c, r) \mid c, r \in \mathbb{R}, r \geq 0\}$ be the set of closed intervals represented this way.

Now, let's define the interval "starts" relation \preceq on X as follows

$$(c,r) \leq (d,q)$$
 if and only if $c+q=d+r$ and $c+r \leq d+q$

Prove that \leq is transitive.