Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Recall that \mathbb{Z}^2 is the set of all pairs of integers. Let's define the equivalence relation \sim on \mathbb{Z}^2 as follows: $(a,b) \sim (p,q)$ if and only ab = pq. List three members of [(5,6)].

Solution: (5,6), (1,30), (-15,-2)

3. (5 points) Let T be the relation defined on set of pairs $(x,y) \in \mathbb{R}^2$ such that (x,y)T(p,q) if and only if $x \leq p$ and $y \leq q$. Is T antisymmetric? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: This relation is antisymmetric. Suppose that (x,y)T(p,q) and (p,q)T(x,y). Then $x \le p$ and $y \le q$, and also $p \le x$ and $q \le y$. So x = y and y = q. So (x,y) = (p,q).

Name:											
NetID:				Lec	ture:		\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be antisymmetric.

Solution: For any $x, y \in A$, if xRy and yRx, then x = y. Or for any $x, y \in A$, if xRy and $x \neq y$, then $y \not Rx$.

3. (5 points) Suppose that R is an equivalence relation on the integers. Is it true that $y \in [x]_R$ if and only if $x \in [y]_R$, for any integers x and y? Informally explain why it's true or give a concrete counter-example.

Solution: This is true. If $y \in [x]_R$, then yRx. But equivalence relations are symmetric, so this implies that xRy, which means that $x \in [y]_R$. The same argument also works in the opposite direction.

Name:											
NetID:				Lec	ture:		\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be symmetric.

Solution: For any $x, y \in A$, if xRy, then yRx.

3. (5 points) Suppose that R is the relation on the set of integers such that aRb if and only if $|a-b| \leq 13$ Is R transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: No, it is not transitive. Consider $a=0,\,b=13,\,c=26.$ Then aRb and bRc. However, |a-c|=26, so $a\not Rc$.

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that S is the set of all binary strings (i.e. finite sequences of 1's and 0's). Suppose that \sim is the relation on S where $a \sim b$ if and only if a and b contain the same number of 1's. For example, 0101 \sim 1000001. List three members of [111].

Solution: For example, 111, 1101, and 01110.

3. (5 points) Let T be the relation defined on set of pairs $(x,y) \in \mathbb{R}^2$ such that (x,y)T(p,q) if and only if $x-p \leq y-q$. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: This relation is transitive. Suppose that (x,y)T(p,q) and (p,q)T(m,n). Then $x-p \le y-q$ and also $p-m \le q-n$. Adding these two equations together, we get $(x-p)+(p-m) \le (y-q)+(q-n)$. This simplifies to $x-m \le y-n$. So (x,y)T(m,n).

Name:											
NetID:				Lec	ture:		\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

2. (5 points) Let's define the equivalence relation \sim on $\mathbb R$ such that $x \sim y$ if and only $|x-y| \in \mathbb Z$. List three members of [1.7].

Solution: For example, 1.7, 2.7, and 1009.7.

3. (5 points) Let T be the relation defined on set of pairs $(x,y) \in \mathbb{R}^2$ such that (x,y)T(p,q) if and only if xp + yq = 0. Is T irreflexive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: This relation is not irreflexive, because (0,0) is related to itself.

Name:											
NetID:				Lec	ture:		\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

2. (5 points) Can a relation be reflexive, symmetric, and also antisymmetric? Either give such a relation or briefly explain why it's not possible to construct one.

Solution: Yes, this is possible. Suppose that our set contains three elements a, b, and c. And suppose that we have aRa, bRb, cRc and no other relationships. Then R is reflexive, symmetric and also antisymmetric.

3. (5 points) Let R be the relation on \mathbb{Z} such that xRy if and only if |x| + |y| = 2 Is R transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: No, R is not transitive. We have 0R2 and 2R0, but not 0R0.