NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Recall that \mathbb{Z}^2 is the set of all pairs of integers. Let's define the equivalence relation \sim on \mathbb{Z}^2 as follows: $(a,b) \sim (p,q)$ if and only ab = pq. List three members of [(5,6)].

3. (5 points) Let T be the relation defined on set of pairs $(x,y) \in \mathbb{R}^2$ such that (x,y)T(p,q) if and only if $x \leq p$ and $y \leq q$. Is T antisymmetric? Informally explain why it is, or give a concrete counter-example showing that it is not.

Name:_____ NetID: Lecture: \mathbf{B} 1 $\mathbf{2}$ 3 Discussion: Thursday **Friday 10** 11 **12** 6 4 5

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be antisymmetric.

3. (5 points) Suppose that R is an equivalence relation on the integers. Is it true that $y \in [x]_R$ if and only if $x \in [y]_R$, for any integers x and y? Informally explain why it's true or give a concrete counter-example.

Name:											
NetID:				Lecture:			\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be symmetric.

3. (5 points) Suppose that R is the relation on the set of integers such that aRb if and only if $|a-b| \le 13$ Is R transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that S is the set of all binary strings (i.e. finite sequences of 1's and 0's). Suppose that \sim is the relation on S where $a \sim b$ if and only if a and b contain the same number of 1's. For example, 0101 \sim 1000001. List three members of [111].

3. (5 points) Let T be the relation defined on set of pairs $(x,y) \in \mathbb{R}^2$ such that (x,y)T(p,q) if and only if $x-p \leq y-q$. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Let's define the equivalence relation \sim on $\mathbb R$ such that $x \sim y$ if and only $|x-y| \in \mathbb Z$. List three members of [1.7].

3. (5 points) Let T be the relation defined on set of pairs $(x,y) \in \mathbb{R}^2$ such that (x,y)T(p,q) if and only if xp + yq = 0. Is T irreflexive? Informally explain why it is, or give a concrete counter-example showing that it is not.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Can a relation be reflexive, symmetric, and also antisymmetric? Either give such a relation or briefly explain why it's not possible to construct one.

3. (5 points) Let R be the relation on \mathbb{Z} such that xRy if and only if |x| + |y| = 2Is R transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.