NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (10 points) Suppose that $f: \mathbb{Z} \to \mathbb{Z}$ is onto. Let's define $g: \mathbb{Z}^2 \to \mathbb{Z}$ by g(x,y) = (1-f(x))f(y). Prove that g is onto.

2. (5 points) Give an example of a function $f: \mathbb{Z} \to \mathbb{Z}$ which is one-to-one but not onto. Be specific.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (10 points) Let's define the function $f: \mathbb{R}^+ \to \mathbb{R}$ by $f(x) = \frac{x^2 + 2}{3x^2}$. (\mathbb{R}^+ is the positive reals.) Prove that f is one to one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: M \to C$ to be "onto." You must use explicit quantifiers. Do not assume the reader knows what the image of the function is.

Name:											
NetID:				Lecture:			\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

1. (10 points) Let P be the set of pairs of positive integers. Suppose that $f: P \to \mathbb{R}^2$ is defined by $f(x,y)=(\frac{x}{y},x+y)$. Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.

2. (5 points) $A = \{2, 3, 4, 5, 6, 7, 8 ...\}$, i.e. the integers ≥ 2 $B = \{1, 2, 4, 8, 16, 32, 64, ...\}$, i.e. powers of 2 starting with 1 Give a specific formula for a bijection $f: A \rightarrow B$. (You do not need to prove that it is a bijection.)

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (10 points) Suppose that $f: \mathbb{N} \to \mathbb{N}$ is onto. Let's define $g: \mathbb{N}^2 \to \mathbb{Z}$ by g(m,n) = (2-n)f(m). Prove that g is onto.

2. (5 points) Suppose that $g: A \to B$ and $f: B \to C$. Prof. Snape claims that if g is onto, then $f \circ g$ is onto. Disprove this claim using a concrete counter-example in which A, B, and C are all small finite sets.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (10 points) Let $g: \mathbb{N} \to \mathbb{N}$ be onto, and let $f: \mathbb{N}^2 \to \mathbb{Z}$ be defined by f(n, m) = (m-1)g(n). Prove that f is onto.

2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: M \to C$ to be "one-to-one." You must use explicit quantifiers; do not use words like "unique".

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (10 points) Let's define the function $f: \mathbb{R}^+ \to \mathbb{R}$ by $f(x) = \frac{4x-1}{2x+5}$. (\mathbb{R}^+ is the positive reals.) Prove that f is one to one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.

2. (5 points) Give an example of a function $f: \mathbb{Z} \to \mathbb{Z}$ which is onto but not one-to-one. Be specific.