Name:_

NetID: Lecture: \mathbf{A}

Discussion: **10** $\mathbf{2}$ Thursday Friday 11 121 3 4 5 6

1. (5 points) Suppose that |A| = p and |B| = q, $p \le q$. How many different one-to-one functions are there from A to B?

Solution: $\frac{q!}{(q-p)!}$

2. (10 points) Check the (single) box that best characterizes each item.

If $f: \mathbb{Z} \to \mathbb{R}$ is a function such that f(x) = |x| then N is the ____ of f.

domain image

co-domain

 \mathbf{B}

 $q: \mathbb{R}^2 \to \mathbb{R}$ g(x,y) = |x| + y

onto

not onto

not a function

 $g: \mathbb{R}^2 \to \mathbb{R}^2$ g(x,y) = (y,3x)

one-to-one

not one-to-one

not a function

Suppose a graph with 12 vertices is colored with exactly 5 colors. By the pigeonhole principle, every true color appears on at least two vertices.

false

 $\forall x \in \mathbb{Q}, \ \exists m, n \in \mathbb{Z}, \ x = \frac{m}{n}$

true

false

Na	me:											
Net	tID:	_	Lecture:			\mathbf{A}	В					
Disc	cussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
1.	divided am	Xin plans to ran ong 4 suits). He the hand be? Bri	'd like to be	sure tl	he han							,
	Solution:	He needs to dra	w 9 cards.									
		e hand contained er of cards must										
2.	(10 points)	Check the (single	e) box that h	best ch	aracter	izes eac	h ite	em.				
		is one-to-one if and e in the domain in age.	•	ie]	false]				
	$g: \mathbb{R}^2 \to \mathbb{R}$ $g(x,y) = \lfloor x \rfloor$	$c\rfloor + y$ on	e-to-one		not or	ne-to-or	ne [$\sqrt{}$	n	ot a	funct	ion
	$g: \mathbb{R} \to [-1]$ $g(x) = \sin(x)$	onto	√ I	not ont	о] n	ıot a	$_{ m func}$	tion			
	$f: \mathbb{N}^2 \to \mathbb{Z}$ $f(p,q) = 2^p$	3^q on	e-to-one	$\sqrt{}$	not o	ne-to-o	ne		n	ot a	funct	zion
	$\forall x \in \mathbb{Z}^+, \ \exists$	$y \in \mathbb{Z}^+, \ xy = 1$		true		fal	se					

 $\forall x \in \mathbb{Z}, \ \exists y \in \mathbb{Z}, \ x - y < 100$ true

Name: NetID:		_	Lecture: A								
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
	Suppose that $ A $ justify or show w	ork. (Hint:	how ma	any no	n-onto	funct	tions	are th	nere?))	
values map	to 5 or all input umber of onto fun	values map	to 6. Th								-
2. (10 points)	Check the (single	e) box that l	best cha	aracter	izes eac	ch ite	em.				
	$\mathbb Z$ is a function su then $\mathbb N$ is the $_$			main age	$\sqrt{}$	C	eo-don	nain			
$g: \mathbb{Z} \to \mathbb{Z}$ $g(x) = x x$	on	to	not o	nto	$\sqrt{}$	no	t a fu	nctio	n		
$g: \mathbb{Z} \to \mathbb{Z}$ $g(x) = 7 -$	$\lfloor \frac{x}{3} \rfloor$ one-to	o-one	nc	ot one-	to-one		′	not	a fur	nction	1
$g: \mathbb{Z} \to \mathbb{Z}$ $g(x) = x x$	on	e-to-one	\checkmark	not o	ne-to-o	ne		n	ot a	funct	ion

false

Name:											
NetID:	_	Lecture: A				В					
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
` = ,	How many differnimalist''? Sho		_	s can b	oe made	e be	rearra	anging	g the	char	acters in the
	There are 10 chapermutations is	aracters tota	al, with	two co	opies of	m a	and th	iree co	opies	of i.	So the total
				10! 3!2!							
2. (10 points)	Check the (single	e) box that l	best ch	aracter	rizes eac	ch ite	em.				
	n is onto, then each		he tri	ue	$\sqrt{}$	false	е				
$g: (\mathbb{Z}^+)^2 - g(x,y) = g(x,y)$	\mathbb{Z}^+ $\operatorname{cd}(x,y)$ on	e-to-one		not o	ne-to-oı	ne		r	not a	func	tion
$g: (\mathbb{Z}^+)^2 - g(x,y) = gg$		to 🗸	not	onto [nc	ot a fu	ınctio	n [
$f: \mathbb{R} \to \mathbb{Z}$ $f(x) = x$	one-t	o-one	n	ot one-	to-one			not	a fur	nction	
$\exists m,n\in\mathbb{Z},$	$\forall x \in \mathbb{Q}, \ x = \frac{m}{n}$	tru	e		false						

 $\exists y \in \mathbb{Z}, \ \forall x \in \mathbb{Z}, \ x - y < 100$

Name:											
NetID:		-	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
(- /	Suppose that A is at there are x and		_		,	_			,	geonho	ole Principle
represent ea $0 \le r_i < k$.	(You don't need ach integer x_i in There are k possemainder, which is	terms of its ible remaind	quotie lers, bu	t and k + 1	remair 1 numb	nder ers i	mod A .	k, i.e	x_i	$= kq_i$	$+ r_i$, where
2. (10 points)	Check the (single	e) box that h	oest cha	aracter	rizes eac	ch ite	em.				
	is one-to-one if ar ne in the co-doma e pre-image.	•	ie v	/	false						
$g: \mathbb{Z}^2 \to \mathbb{Z}^2$ $g(x,y) = (y$	ono t	o-one $\sqrt{}$	n	ot one-	-to-one			not	a fu	nction	
$g: \mathbb{Z} \to \mathbb{N}$ $g(x) = x$	one-te	o-one	no	ot one-	to-one			not	a fur	nction	$\sqrt{}$
$g: \mathbb{N}^2 \to \mathbb{N}$ $g(x,y) = gc$	$\operatorname{ed}(x,y)$ on	to	not o	onto [no	t a fu	nctio	n	$\sqrt{}$	

true

false

Name:_													
NetID:				_	Lectu			A	В				
Discussio	n:	Thurso	day	Friday	10	11	12	1	2	3	4	5	6
, –				ent 10-letter ow your wor	_	s can b	oe made	be	rearra	anging	the	char	acters in the
		There are possibilities		ters total, w	ith 4 co	opies o	f t, two	a's,	two e	e's, an	d tw	o l's.	So the total
					$\overline{4!}$	10! 2!2!2!							
2. (10 po	ints)	Check the	(single	e) box that l	best ch	aracter	rizes eac	h it	em.				
	2x t	R is a funct then the rea		ch that abers is the		main age		C	o-don	nain			
$g: \mathbb{N}^2$ $g(x,y)$		$\operatorname{ed}(x,y)$	on	e-to-one		not o	ne-to-or	ne		ne	ot a	funct	ion 🗸
$f: \mathbb{N}^2$ f(p,q)		!	0	nto $\sqrt{}$	not	onto		1	not a	functi	on		
10 (inc if ther	clusiv e are	e). Accordi	ing to rooms	access code be the pigeonh , then every wo rooms.	ole pri	nciple,	true			fals	se [$\sqrt{}$	
$\forall m, n$	$\in \mathbb{Z},$	$\exists x \in \mathbb{Q}, \ x$	$=\frac{m}{n}$	true	e 🗌		false	1/]				