NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

Use (strong) induction to prove the following claim:

Claim:
$$\sum_{p=1}^{n} \frac{2}{p^2 + 2p} = \frac{3}{2} - \frac{1}{(n+1)} - \frac{1}{(n+2)}$$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:											
NetID:				Lecture:			\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

If f is a function, recall that f' is its derivative. Recall the product rule: if f(x) = g(x)h(x), then f'(x) = g'(x)h(x) + g(x)h'(x). Assume we know that the derivative of f(x) = x is f'(x) = 1.

Use (strong) induction to prove the following claim:

For any positive integer n, if $f(x) = x^n$ then $f'(x) = nx^{n-1}$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

Let A be a constant integer. Use (strong) induction to prove the following claim. Remember that 0! = 1.

Claim: For any integer $n \ge A$, $\sum_{p=A}^{n} \frac{p!}{A!(p-A)!} = \frac{(n+1)!}{(A+1)!(n-A)!}$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

Use (strong) induction to prove the following claim:

Claim:
$$\sum_{p=1}^{n} 2(-1)^p p^2 = (-1)^n n(n+1)$$
, for all positive integers n

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

Use (strong) induction and the fact that $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$ to prove the following claim:

For all natural numbers n, $(\sum_{i=0}^{n} i)^2 = \sum_{i=0}^{n} i^3$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: (Start by removing the top term from the sum on the lefthand side.)

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^5 (p+1) = 4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

$$\prod_{p=2}^{n} (1 - \frac{1}{p^2}) = \frac{n+1}{2n}$$
 for any integer $n \ge 2$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: