Name:_____

NetID: Lecture: \mathbf{A} \mathbf{B}

Thursday 1 $\mathbf{2}$ 3 Discussion: **Friday 10** 11 **12** 4 **5** 6

1. (11 points) Let's define two sets as follows:

$$A = \{(x, y) \in \mathbb{R}^2 : y = 3x + 7\}$$

$$B = \{\lambda(-2, 1) + (1 - \lambda)(1, 10) : \lambda \in \mathbb{R}\}\$$

Prove that A = B by proving two subset inclusions.

2. (4 points) Check the (single) box that best characterizes each item.

$$\sum_{k=0}^{\infty} \frac{1}{2^k}$$

$$1 - \left(\frac{1}{2}\right)^{n-1}$$

$$2 - (\frac{1}{2})^n$$

$$1 - (\frac{1}{2})^n$$

Chromatic number of C_n .

$$\leq 3$$

$$\leq 4$$

Name:_

NetID: Lecture: \mathbf{A} \mathbf{B}

Friday 1 2 Discussion: Thursday 10 11 **12** 3 6 4 5

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

$$\sum_{k=1}^{n} k!$$

$$\sum_{p=0}^{n+1} (p+1)!$$

$$\sum_{k=0}^{n+1} (k-1)!$$

$$\sum_{p=0}^{n+1} (p+1)! \qquad \sum_{k=0}^{n+1} (k-1)! \qquad \sum_{k=0}^{n-1} (k+1)! \qquad \sum_{p=0}^{n+1} k!$$

$$\sum_{n=0}^{n+1} k!$$

All elements of M are also elements of X.

$$M = X$$

$$X \subseteq M$$

Chromatic number of G

$$\mathcal{C}(G)$$

$$\phi($$

$$\phi(G)$$

$$\chi(G)$$

$$\parallel G \parallel$$

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (11 points) Recall that if G is a graph, then $\chi(G)$ is its chromatic number. Suppose that G is a graph and H is another graph not connected to G. Suppose G and H each have at least two nodes and at least one edge. Dr. Evil picks two adjacent nodes a and b from G, and also two adjacent nodes c and d from H. He merges G and H into a single graph T by merging b and d into a single node, and adding an edge connecting a and c. So, if G and H are as shown on the left, then T might look as shown on the right.

Describe how $\chi(T)$ is related to $\chi(G)$ and $\chi(H)$, justifying your answer.

- 2. (4 points) Check the (single) box that best characterizes each item.
 - $\sum_{k=-2}^{n} k^2 \qquad \sum_{p=0}^{n+2} (p+2)^2 \qquad \qquad \sum_{p=0}^{n-2} (p-2)^2 \qquad \qquad \sum_{p=0}^{n+2} (p-2)^2 \qquad \qquad \sum_{p=0}^{n+2} p^2 \qquad \qquad$

 W_7 is a subgraph of graph H. 4 is _____ the chromatic number of H.

an upper bound on a lower bound on

exactly not a bound on

Name:____

NetID: Lecture:

Discussion: Thursday Friday **10** 1 11 **12** $\mathbf{2}$ 3 6 4 5

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

$$\sum_{i=0}^{k-1} (k \cdot i + 2)$$

$$\frac{k^2(k+1)}{2} + 2k$$

$$\frac{k^2(k+1)}{2} + 2k$$
 $\frac{k(k+1)}{2} + 2(k-1)$

 \mathbf{A}

 \mathbf{B}

$$\sum_{i=0} (k \cdot i + 2)$$

$$\frac{k^2(k-1)}{2} + 2k$$

$$\frac{k(k-1)}{2} + 2(k-1)$$

When I poured 5 gallons of water into the bucket, some spilled over the top. 5 gallons is ____ how much the bucket holds.

an upper bound on a lower bound on

exactly	
not a bound on	

Chromatic number of a bipartite graph with at least two vertices.

can't tell

Name:_____

NetID:_____ Lecture: A

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

p-1	
7,	ι
$\overline{i-1}$	

$$\frac{p(p-1)}{2}$$

$$\frac{(p-1)^2}{2}$$

$$\underline{p}$$

$$\frac{(p-1)(p+1)}{2}$$

 \mathbf{B}

I heated 2 liters of milk in my big pot. 2 liters is _____ how much the pot holds.

an upper bound on a lower bound on

exactly
not a bound on

Chromatic number of a graph containing a W_n .

$$\geq 2$$

can't tell

Name:											
NetID:			Lecture:			A E					
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
"doubled"	s) Recall that if version of a graph onding nodes. For	G as follow	s: mak	e two o	copies of	f G a	and a	dd an			
	hat T is the double er. Your answer sh								ited t	so χ(C	G), justifying
2. (4 points)	Check the (single)) box that b	est cha	racteri	zes each	ı ite:	m.				
Chromatic	c number of W_n .	2		3		\leq	3		<	4	
11 people	can row the can caused it to sink many people the	. 10 is	an upp					exac		und o	n